Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Изменение свойств говяжьего жира, многократно использованного для жарки продуктов




 

 

 

Характеристика жира До жарки Порядковый номер жарки
Кислотное число Число омыления Неомыляемые вещества Йодное число Ацетильное число Реакция на альдегиды 2,16 195,5 0,34 32,7 4,7 Отрица­тельная 2,21 197,6 0,74 31,8 9,0 Положи­тельная 2,26 199,9 0,78 30,7 9,7 Положи­тельная 1,97 201,8 0,83 29,2 9,6 Ярко выражена

Вусловиях сухого нагрева, например при жарке, на первый план выступают окислительные изменения жиров и процессы полимеризации. В табл. 11.9 приведены некоторые характери­стики говяжьего жира, многократно использованного для жарки.

Рост числа омыления свидетельствует о накоплении низко­молекулярных кислот, а ацетильного числа — об образовании оксикислот.

В процессе нагрева возрастает перекисное число жира и зна­чительно увеличивается содержание в жире акролеина. Цвет жи­ра темнеет, запах ухудшается главным образом в результате пере­хода в него окрашенных продуктов пирогенетического распада органических веществ. При длительном использовании жира для жарки уменьшается усвояемость в результате накопления в нем продуктов окисления и полимеризации. Нагрев жира до высоких температур даже под вакуумом приводит к небольшому сниже­нию йодного числа и увеличению его вязкости.

Окислению, полимеризации и циклизации подвергаются в первую очередь линоленовая и линолевая кислоты. При этом возможно образование шестичленных непредельных цикличе­ских соединений, окисленных полимеров и других веществ, вредных для организма. Эти процессы становятся заметными при высоких температурах нагрева, поэтому при жарке темпера­тура жира не должна превышать 170 °С.

Прогревание бульона при 100 "С в течение часа предохраняет жир от прогоркания. По-видимому, это обусловлено образова­нием антиокислителей.

Изменение экстрактивных веществ

Экстрактивные вещества мяса при его тепловой обработке претерпевают существенные изменения, которые играют реша­ющую роль в образовании специфических аромата и вкуса варе­ного мяса. Тщательно отмытое от растворимых в воде веществ мясо после варки обладает очень слабым запахом, а водная вы­тяжка из него имеет вкус и запах вареного мяса. После диализа эта вытяжка почти утрачивает запах, присущий вареному мясу.

Изменения, обусловливающие появление такого запаха, еще не полностью изучены. Известно, однако, что важную роль в этом играют глутаминовая кислота и продукты распада инозино-вой кислоты. Глутаминовая кислота и ее натриевая соль даже в незначительных количествах (0,03 %) придают продукту вкус, близкий к вкусу мяса.

При нагревании усиливается распад инозиновой кислоты: при 95 °С через 1 ч распадается около 80 % кислоты с образова­нием преимущественно гипоксантина. При этом несколько воз­растает количество неорганического фосфора в результате обра­зования фосфорной кислоты.

В процессе варки изменяется также содержание других экс­трактивных веществ. Около 1/3 креатина, обладающего горько­ватым вкусом, превращается в креатинин. Распадается около 10... 15 % холина. В результате распада соединений, содержа­щих лабильно связанную серу, в вареном мясе образуется серо­водород, количество которого зависит от вида и состояния мяса, а также от условий варки. Оно возрастает с повышением температуры и увеличением продолжительности нагрева. В ва­реной говядине сероводорода меньше, чем в свинине, а в ней меньше, чем в телятине, в мороженом мясе больше, чем в охлажденном. Выделение сероводорода при умеренных темпе­ратурах связывают с распадом глутатиона (трипептид, образуе­мый глицином глутаминовой кислоты и цистином), так как он возникает при исчезновении серы глутатиона. Одновременно с выделением сероводорода в результате распада глутамина и глутатиона образуется глутаминовая кислота. Введение окис­лителей (нитрита, нитрата) уменьшает скорость образования сероводорода.

При варке мяса в бульон выделяются вещества, в состав кото­рых входят карбонильные группы, обладающие различным аро­матом. В бульоне обнаружены ацетальдегид, ацетоин, диацетил.

Эти вещества возникают благодаря реакции взаимодействия свободных аминокислот с редуцирующими сахарами (в том чис­ле глюкозой), которая приводит к образованию меланоидинов. В ходе сложной окислительно-восстановительной реакции в ка­честве побочных продуктов выделяются карбонильные соеди­нения.

В бульоне, полученном варкой обезжиренной говядины, с по­мощью хроматографического метода обнаружены низкомолеку­лярные жирные кислоты (муравьиная, уксусная, пропионовая, масляная, изомасляная), также обладающие ясно выраженным ароматом.

Можно полагать, что специфичность запаха вареного мяса связана с составом липидной фракции мышечной ткани, так как запах различных видов обезжиренного мяса мало различается.

Вопрос о том, какие именно вещества придают мясу его спе­цифические аромат и вкус после тепловой обработки, еще до конца не решен. Однако экспериментально доказана связь вкуса мяса с содержанием в нем свободных пуринов, в частности гипо­ксантина. Количество этих веществ в мышечной ткани различно и зависит от глубины развития посмертных изменений в тканях. Запахом бульона обладает также кетомасляная кислота.

Изменения витаминов

Тепловая обработка продуктов животного происхождения при умеренных температурах (до 100 °С) уменьшает содержание в них некоторых витаминов из-за химических изменений, но главным образом в результате потерь во внешнюю среду. В зави­симости от способа и условий тепловой обработки мясо теряет, %: тиамина 30...60, пантотеновой кислоты и рибофлавина 15...30, никотиновой кислоты 10...35, пиридоксина 30...60, часть аскор­биновой кислоты.

При варке изделий в оболочке потери витаминов несколько меньше. Так, при паровой варке теряется 25...26 % тиамина и 10...20 % рибофлавина, а при варке в воде — 10 % тиамина и 14 % рибофлавина.

Таким образом, тепловая обработка продуктов животного происхождения даже при умеренных температурах приводит к некоторому снижению их витаминной ценности.

Нагрев при температуре выше 100 °С вызывает различное по степени разрушение многих витаминов, содержащихся в мясе.

11.10. Изменение содержания витаминов в свинине при разной температу­ре и продолжительности нагрева (% первоначального содержания)

 

Температура Продолжи- Тиамин Рибо- Никоти- Панто-
нагрева, °С тельность (Bi) флавин новая теновая
  нагрева, мин   т кислота кислота
ПО
 
' 4
 
 

Степень разрушения зависит от природы витаминов, темпера­туры и продолжительности нагрева. В табл. 11.10 приведены результаты изменения витаминов в процессе нагрева свинины в зависимости от температуры и длительности нагрева.

Аскорбиновая кислота (витамин С) также разрушается и тем больше, чем выше температура и продолжительнее нагрев.

Из числа жирорастворимых витаминов наименее устойчив витамин D, который при температуре выше 100 °С начинает раз­рушаться. Содержание витамина А в отсутствие кислорода мало изменяется при нагреве вплоть до 130 "С. Витамины Е и К наибо­лее устойчивы к нагреву.

Сухой нагрев в контакте с воздухом, например при жарке мя­сопродуктов, вызывает еще более интенсивное разрушение вита­минов, в особенности тех, которые легко окисляются (витамины А, Е, С).

Изменение водоудерживающей способности мяса и мясопродуктов при их тепловой обработке

Вода — естественный компонент мяса, образующий устойчи­вые структурированные системы с другими его частями. Формы и прочность связи воды в этих системах влияют на свойства мя­са, втом числе на водоудерживающую способность, по характе­ру изменения которой можно судить об изменении потерь массы в процессе тепловой обработки и о качестве продукта. В настоя­щее время под водоудерживающей способностью мяса понима­ется сила, с которой часть его собственной воды или собственной с небольшим количеством добавленной воды удерживается белками, а также другими веществами и структурными система­ми мяса при воздействии на него каких-либо сил извне.

На изменение водоудерживающей способности мяса в про­цессе его тепловой обработки влияют многие факторы: темпера­тура, до которой оно нагревается, длительность выдержки при ней, температура среды, способ тепловой обработки, скорость нагрева, величина рН обрабатываемого сырья, реологические характеристики, химический состав продукта, количество добав­ленной поваренной соли, воды, вид мяса, анатомическое проис­хождение мышц, возраст животных и др.

Структура воды и изменение ее в процессе на­грева. Белковая макромолекула окружена водой, которую нель­зя рассматривать как нейтральное вещество, так как благодаря своим уникальным свойствам она, с одной стороны, подвергает­ся воздействию растворенных в ней белковых макромолекул, с другой — сама активно влияет на конформацию белка. Известно, что вода служит связующим звеном между белковыми молекула­ми. Составляя 70...75 % массы живой клетки (в протоплазме ее со­держится около 70...80 %, в фибриллах — около 70, в саркоплаз­ме — 20, во внеклеточном пространстве — 10 %), вода представ­ляет собой ту жидкую среду, в которой осуществляются обмен и транспортировка веществ. Стабилизация пространственной структуры белка и других биополимеров в значительной мере осу­ществляется в результате их взаимодействия с водой.

Уникальные свойства воды обусловлены ее способностью об­разовывать четыре водородные связи между молекулами и одно гидрофобное взаимодействие, в результате которых возникают сильные межмолекулярные связи, приводящие к образованию ассоциации. При этом две водородные связи включают два атома водорода молекулы воды, а две другие — неспаренные электроны кислорода и два атома водорода соседних молекул, поэтому мо­гут выступать одновременно в роли донора и акцептора электро­нов в процессе образования водородных связей. В этом случае одна из взаимодействующих молекул получает избыточный по­ложительный заряд, приобретая «кислые свойства», а другая — отрицательный заряд и «основные» свойства. В результате моле­кулы, соединенные водородной связью, способны образовывать более прочные связи с другими молекулами. Таким образом, во­дородные связи в воде носят кооперативный характер, т. е. одно­временно образуются или рвутся большие группы связей.

В настоящее время учеными разработан ряд моделей воды, объясняющих многие ее свойства и аномалии. Наиболее распро­страненная модель основана на сохранении в воде каркаса льда с заполнением пустот свободными диполями. Ближняя упорядо­ченность в воде может быть охарактеризована как размытая теп­ловым движением структура льда. С повышением температуры доля заполненных пустот увеличивается.

Результаты рентгеноструктурного анализа свидетельствуют о том, что в воде при 25 "С заполнена половина всех пустот струк­туры и что искажение каркаса ведет к нарушению межмолеку­лярных расстояний. Согласно изложенным представлениям воду следует рассматривать как расшатанный льдоподобный каркас, в который вплавлены области, обладающие более компактной, но ориентационно разупорядоченной структурой.

Другая модель, получившая в последнее время широкое рас­пространение, — модель «текучих кластеров». В основе ее лежит теория образования водородных связей на базе кооперативного эффекта. Согласно этой концепции водородная связь, имеющая в решетке льда частично ковалентную природу, использует на свое построение кроме собственной энергии диполя энергию, передаваемую соседними диполями в результате переноса непо-деленных электронов атома кислорода одной молекулы на неза­нятые орбиты атома водорода соседней молекулы. Процесс со­провождается расщеплением заряда, в результате чего оказывает­ся, что одна из взаимодействующих молекул воды подкисляется, а другая приобретает щелочные свойства. В конечном итоге это приводит к тому, что водородные связи не образуются и не рас­падаются одиночно: разрыв или образование одной индуцирует соответствующий процесс у соседних водородных связей.

Следует отметить, что большинство исследователей связыва­ют снижение водосвязывающей способности и потери влаги в процессе нагрева мяса только с изменением конформационной структуры белка. Белковая макромолекула в мясе всегда находит­ся в окружении воды. Растворы неполярных веществ являются структурообразователями по отношению к воде. Наличие непо­лярного углерода в ней способствует возникновению гидрофоб­ного взаимодействия. На основании этого можно считать, что вода в значительной степени определяет конформацию макро­молекул. Однако это свойство воды обусловлено непосредствен­но структурой, которая, в свою очередь, может изменяться под воздействием различных факторов, в частности температуры.


Рис. 11.10. График зависимости снижения содержания влаги от температуры образца и рН фарша

Известны четыре характерные температуры (15, 30, 45, 60 °С), при которых происходят резкие изменения состояния воды. Считают, что при указанных температурах в воде совершаются качественные структурные переходы.

Исследования зависимости снижения содержания влаги от тем­пературы и рН образца фарша показали, что отделение влаги начи­нается уже при температуре 35 °С (рис. 11.10). Однако, начиная с температур 45...50 °С, влага выделяется более интенсивно. Это объясняется изменением, с одной стороны, структуры воды при указанных температурах, с другой — конформацией белковой мак­ромолекулы, которая обусловлена комплексом внутри- и межмоле­кулярных водородных связей и гидрофобных взаимодействий.

Поскольку нагрев сопровождается разрушением структур во­ды (водородных связей и гидрофобных взаимодействий), действующие между протофибриллами вторичные силы Ван-дер-Ваальса стягивают молекулу белка в более компактную форму, т. е. происходят полимеризация дискретных белков и увеличение их молекулярной массы. При этом с повышением температуры контакт воды с углеводородом приводит к энергетически менее выгодной замене взаимодействия вода—вода взаимодействием углерод—вода, структура белка уплотняется, что вызывает зна­чительное выделение влаги в виде бульона.

Формы связи воды с дисперсными системами. Известно, что мясо и выработанные из него полуфабрикаты, фар­ши и другие продукты представляют собой сложные дисперсные системы. Их свойства зависят от объемного соотношения дис­персной фазы и дисперсионной среды (воды), характера и проч­ности связи между ними, а также между отдельными частицами.

Формы связи воды в дисперсных системах, по П. А. Ребинде-ру, классифицируют следующим образом: химическая, физико-химическая, физико-механическая.

К химической связи относятся ионная и молекулярная, кото­рые характеризуются связью в строго молекулярных соотноше­ниях. Химически связанная — гидратационная вода — является прочносвязанной, ее количество составляет 6... 10 % к массе су­хого вещества.

К физико-химической связи относятся адсорбционная и ос­мотическая, которые осуществляются в различных не строго определенных соотношениях.

К физико-механической относятся связи: в микро-(г< Ю-7 м) и макрокапиллярах (/•> 10~7м), структурная и смачивания. Удер­живание воды физико-механическими связями осуществляется в неопределенных соотношениях.

Ионная, очень сильная связь может быть нарушена при хими­ческом взаимодействии или прокаливании. Молекулярная связь также относится к сильным и может быть нарушена при нагреве мяса до температуры выше 150 "С.

Наибольшее влияние на качество продукта и потери массы в процессе его тепловой обработки, по-видимому, оказывает фи­зико-химически и физико-механически связанная вода. Ис­пользуя классификацию форм связи П. А. Ребиндера, связанную в мясе воду подразделяют на четыре основных вида.

Первый (слой а) — гидратационная вода, связанная электро­статически с полярными группами белков посредством положи­тельных или отрицательных зарядов водных диполей. Второй

(слой Ь) — связан с белками посредством притяжения водных ди­полей (диполь—диполь). Третий (слой с) — капиллярно связан­ная и адсорбированная вода. Четвертый (слой d) — вода смачи­вания.

Выделяют три формы связывания воды с белком: гидратаци­онная, иммобилизованная и свободная вода.

Гидратационная вода составляет примерно 10 % всей имеющейся в мясе воды, адсорбированной белком. Вследствие двухполюсного характера молекул она присоединяется к ионам и другим полярным группам, имеет измененные физические пока­затели, не поддается физиологическому воздействию, не влияет на колебания водоудерживающей способности.

Иммобилизованная (связанная) вода прочно удерживается сетью мембран и волокнами мышечных белков, а также сцеплениями водородных носителей зарядов. Эта часть воды с большим трудом выжимается и не вытекает из мяса.

Свободная вода находится между клетками, очень «рых­ло» связана и легко вытекает при нагреве. Это обусловливает, с одной стороны, потери массы от испарения при замораживании и холодильном хранении мяса и от вытекания сока при его раз­мораживании, с другой — способствует сушке мясопродуктов.

В зависимости от состояния мышечных белков изменяется со­отношение между иммобилизованной и свободной водой, причем оба ее вида следует рассматривать как единое целое: если количест­во иммобилизованной воды увеличивается, то свободной — сокра­щается, и водоудерживающая способность возрастает; при умень­шении количества иммобилизованной воды повышается содержа­ние свободной, и влагоудерживающая способность понижается.

Для оценки прочности связи воды в мясных изделиях А. А. Со­колов предложил следующую динамическую схему: вода, содер­жащаяся в мясе, подразделяется на прочносвязанную и слабо­связанную, а слабосвязанная — на полезную (которая остается в продукте после тепловой обработки) и избыточную.

В этом случае к прочносвязанной воде относится адсорбци­онная, удерживаемая молекулярно-силовым полем у поверхно­сти раздела дисперсных частиц — мицелл с окружающей средой и гидрофильными центрами белковых молекул, а также влага микрокапилляров с г < 10~7 м и механически удерживаемая.

Вода слабосвязанная необходима для обеспечения желатель­ных свойств и нормированного выхода продукта. Вода слабосвя­занная избыточная в основном отделяется при тепловой обработке мясопродуктов. Повышение влагосодержания фарша пу­тем увеличения доли слабосвязанной избыточной воды приво­дит к значительному ее отделению в процессе нагрева продукта и, следовательно, к снижению качества готовых изделий.

Считают, что ионная связь особенно важна для увеличения водоудерживающей способности мяса. Поскольку некоторые аминокислоты содержат две карбоксильные и две аминогруппы, то помимо блокированных пептидной связью имеются группы с кислой и щелочной реакцией, которые образуют анионы и ка­тионы. Кроме названных в молекуле аминокислот содержатся и другие функциональные группы, например гидроксильные (—ОН) и сульфгидрильные (—SH). Они имеют полярный харак­тер, вследствие чего также могут удерживать воду.

В зависимости от того, являются ли заряды соседствующих ионов одноименными или противоположными, они взаимно притягиваются либо отталкиваются. Известно, что количество зарядов в изоэлектрической точке (рН ~ 5,0) минимально. Мясо, нагретое при изоэлектрическом состоянии белков, характеризу­ется максимальным отделением бульона и минимальной водо­удерживающей способностью.

Изменение водоудерживающей способности в процессе на­грева соленой говядины (2 %) в зависимости от рН сырья, темпе­ратуры образца и греющей среды представлено на рис. 11.11 и 11.12. Нагрев проводили при температурах греющей среды 75, 100 и 145 °С до достижения в центре образца температур 35, 45, 50, 55, 65, 75, 90, 115, 125 и 135 "С.

Как видно из рис. 11.11, количество влаги, отделяемой при прессовании, зависит в большей степени от величины рН сырья и температуры образца и в меньшей — от температуры греющей среды. Максимальное количество влаги, выделяющейся из об­разца при прессовании (слабосвязанной), наблюдается у мяса с исходным значением рН 5,25 при нагреве до 75 °С. С увеличени­ем рН при нагреве мяса до одинаковой температуры, не превы­шающей 75 "С, количество слабосвязанной влаги снижается. Особенно резко это наблюдается в случае нагрева фарша до 35 и 45 °С при увеличении рН с 5,25 до 5,75. При нагреве мяса выше 75 °С закономерность отделения слабосвязанной влаги изменя­ется: при температуре образца 90 °С и выше количество ее возра­стает с увеличением рН.

При определении влияния температуры образца на измене­ние количества слабосвязанной влаги отмечено, что при нагреве

Рис. 11.11. График зависимости количества отпрессованной влаги от температуры и рН исходного фарша

соленого мяса при всех исследуемых значениях рН до температу­ры 45 °С наблюдаются некоторое уменьшение ее количества (см. рис. 11.11) и повышение содержания неотпрессованной влаги (см. рис. 11.12). По-видимому, процесс денатурации белков со­провождается повышением водосвязывающей способности, хотя и в небольшой степени. Это подтверждается данными, получен­ными П. Л. Приваловым и Г. М. Мревлишвили, которые свиде­тельствуют о том, что гидратация макромолекул действительно изменяется при денатурации, причем это изменение всегда по­ложительно — гидратация денатурированных макромолекул



/ Температура образца, °С

Рис. 11.12. График зависимости количества неотпрессованнои влаги от температуры и рН исходного фарша (температура греющей среды 145 °С)

больше, чем нативных. Этот факт свидетельствует о тесной взаи­мосвязи между конформацией макромолекул и состоянием воды в прилегающих к ним слоях. Обычно этим обстоятельством пре­небрегают при рассмотрении изменений водосвязывающей спо­собности и конформационных превращений макромолекул в во­де, что вряд ли допустимо.

Нагрев образца до температуры от 45 до 50 °С вызывает резкое увеличение количества отпрессованной и снижение неотпрессо­ваннои влаги.

В интервале температур 50...55 °С количество отпрессованной и неотпрессованнои влаги не изменяется. Это свидетельствует о том, что изменение водоудерживающей способности происхо­дит ступенчато. Дальнейшее повышение температуры до 65 °С при рН 5,25...6,00 и до 75 °С при рН 6,25...7,00 вызывает при прессовании значительное снижение количества неотпрессован­нои влаги и увеличение отпрессованной.

При температуре выше 65 (75) °С происходит дополнительное уплотнение структуры в результате образования дисульфидных сшивок и выпрессовывания влаги в процессе нагрева. При этом ведущая роль в формировании белкового каркаса мясопродукта принадлежит миозину.

Повышение температуры до 75 "С вызывает изменение зако­номерностей количества отпрессованной и неотпрессованнои влаги на противоположные, что, по-видимому, означает завер­шение процесса коагуляции белков. Дальнейший нагрев фарша до 135 "С способствует снижению количества отпрессованной и увеличению неотпрессованнои влаги. Интенсивность этих изме­нений зависит от рН сырья, температур образца и греющей сре­ды. Так, по достижении образцом температуры 90 °С потери мас­сы и снижение количества отпрессованной влаги превосходят соответствующие значения, достигаемые при температуре грею­щей среды 100 "С. Такое явление можно объяснить следующим образом: по достижении температуры 90 °С дезагрегация коллаге­на в обоих случаях пока еще незначительна, а продолжительность нагрева в интервале температур 75...90 "С существенно различает­ся и составляет 395 с при температуре греющей среды 100 °С про­тив 34 с при 145 "С. Таким образом, длительность тепловой обра­ботки при исследуемых режимах оказывает большее влияние, чем температура греющей среды. В целом снижение количества от­прессованной и увеличение неотпрессованнои влаги могут быть объяснены развитием процесса дезагрегации коллагена.

Влияние рН мясного фарша. Кроме изменения структуры воды, денатурационных изменений мышечных белков и дезагрегации коллагена существенное влияние на изменение водоудерживающей способности оказывает рН сырья. Результа­ты исследований изменения рН мяса в процессе нагрева в зави­симости от температуры образца и первоначальной величины рН представлены на рис. 11.13.

На изменение рН в процессе нагрева мяса более сильное вли­яние, чем температура греющей среды, оказывают рН исходного сырья и температура образца. Несмотря на то что с повышением последней прирост рН возрастает (величина прироста зависит от рН исходного фарша), водоудерживающая способность его сни­жается, так как параллельно происходит сдвиг изоэлектрической точки фибриллярных белков к более высоким значениям рН.

Состав мясных и костных бульонов из мяса птицы и субпродуктов. Качественный состав бульонов, приготовляе-


Рис. 11.13. График зависимости изменения рН мясного фарша-

в процессе нагрева до заданной температуры от исходного рН

(температура греющей среды 145 °С)

мых из мяса и мясопродуктов, одинаков, в него входят экстрактив­ные и минеральные вещества, белки, липиды, витамины. Белки представлены в основном глютином, который образуется в резуль­тате деструкции коллагена в условиях влажного нагрева. Белки мышечных волокон переходят в бульон в количествах, не превы­шающих 0,2 % массы мясного сырья. Эмульгированный жир со­держится в бульонах, приготовляемых из жирного мяса (грудинка, покромка), жирной птицы (утки, гуси), языков; количество его не превышает 0,8 % массы мясного сырья. Таким образом, основны­ми водорастворимыми компонентами мясных и костных бульонов являются экстрактивные, минеральные вещества и глютин. Коли­чественное содержание указанных компонентов в бульоне зависит от вида мясного сырья, использованного для варки.

Как уже отмечалось, экстрактивные, минеральные и другие низкомолекулярные водорастворимые вещества, а также витамины сосредоточены в саркоплазме мышечных волокон. Из этого следует, что бульоны, сваренные из говядины 1-го и 2-го сорта (см. рис. 11.5 и табл. 11.4), содержат больше экстрактивных и ми­неральных веществ по сравнению с бульонами, сваренными из говядины 3-го сорта, содержащей до 20 % соединительной ткани. Механизм образования мясных бульонов связан с тепловой денатурацией мышечных и соединительнотканных белков. Мышечные белки при денатурации свертываются, отдают в окружа­ющее пространство часть влаги (около 50 %), которая, выходя из мышечных волокон, увлекает за собой часть экстрактивных и минеральных веществ. Этот концентрированный раствор попа­дает в межмышечное пространство, однако в нем не задержива­ется из-за тепловой деформации прослоек мускульной соедини­тельной ткани. Куски мяса сжимаются во всех направлениях, в результате чего отпрессованная белками жидкость вместе с рас­творенными в ней экстрактивными и минеральными вещества­ми вытесняется в окружающую воду, образуя бульон. Опреде­ленная роль в образовании бульона принадлежит диффузии во­дорастворимых веществ из мяса в окружающую воду при варке мяса. Возможность для диффузии возникает в результате денату­рации белков мяса, в том числе сарколеммы мышечных волокон и соединительнотканных прослоек. Движущей силой диффузии служит разность концентраций растворимых веществ в мясе и бульоне. Переход растворимых веществ из мяса в бульон в ре­зультате диффузии может быть усилен двумя путями: увеличени­ем гидромодуля (соотношения воды и мяса) и более мелкой на­резкой мяса, в результате чего возрастает поверхность контакта между мясом и водой.

Погружение мяса для варки в холодную или горячую воду не влияет на количество растворимых веществ, переходящих из мя­са в бульон.

При варке говядины без костей крупными кусками (1...2 кг) в во­ду переходит около 2 % растворимых веществ от массы мяса, в том числе 1,5 % органических и 0,5 % минеральных. При варке языков в бульон переходит около 1,5 % растворимых веществ от массы сырья, в том числе около 30 % составляют минеральные вещества.

При варке кур в виде целых тушек в воду переходит 1,65 % растворимых веществ от их массы, в том числе минеральных — 0,25 %, экстрактивных — 0,68 %.

При варке костных бульонов в течение 3 ч в воду переходит от 2 до 2,5 % растворимых веществ от массы костей.

Если сухой остаток мясного бульона принять за 100 %, то он распределится так: 49 % — экстрактивные вещества, 25 — мине­ральные вещества, 24 — белки (в основном глютин), 2 % — эмульгированный жир. В костном бульоне сухой остаток распре­делится следующим образом: 4 % — экстрактивные вещества, 6 — минеральные вещества, 77,6 — глютин, 12,4 % — эмульгиро­ванный жир. Своеобразный состав костного бульона объясняет­ся низким содержанием в костях экстрактивных веществ, нали­чием минеральных веществ в виде нерастворимых фосфатов и карбонатов кальция.

Контрольные вопросы и задания

1. Приведите сравнительную характеристику химического состава говяди­ны и свинины.

2. По каким параметрам пищевая ценность мяса птицы отличается от пи­щевой ценности говядины?

3. Какие вещества входят в тканевый состав мускульной ткани мяса сель­скохозяйственных животных и птицы?

4. Что общего и в чем различия в тканевом составе субпродуктов и мяса?

5. Каково строение мышечной ткани мяса и какова ее пищевая ценность?

6. Какие белки входят в состав мускульной ткани мяса и какими свойства­ми они обладают?

7. Что представляют собой липиды мяса? Из чего они состоят? Как изме­няются показатели качества липидов мяса при тепловой кулинарной об­работке?

8. Какие витамины и минеральные вещества содержатся в мясе и какие из­менения они претерпевают при кулинарной обработке?

9. Приведите классификацию, строение и химический состав соедини­тельной ткани и обоснуйте ее изменение при нагреве.

 

10. Что представляет собой жировая ткань мяса?

11. Как влияет вид скота и птицы на наличие моно- и полиненасыщенных жирных кислот?

12. Какие изменения происходят в жирах при кулинарной обработке мяса?

13. Что собой представляет по составу и строению пищевая кость?

14. Что такое денатурация, коагуляция и свертывание белков мяса?

15. Как влияет денатурация и коагуляция белков на изменение водоудержи-вающей способности мяса и его прочностных свойств?

16. Как изменяются экстрактивные вещества в процессе кулинарной обра­ботки мяса?

17. Объясните процесс образования аромата в мясных кулинарных издели­ях при их тепловой обработке.

18. Какие имеются формы связи воды с белками и структурными элемента­ми мышечной ткани мяса?

19. Как изменяется содержание прочно- и слабосвязанной воды в процессе тепловой обработки мяса?



Поделиться:

Дата добавления: 2015-08-05; просмотров: 112; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты