КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Основні означення та властивостіВступ Нехай – неперервна, – періодична функція, а – її найкраще наближення тригонометричними поліномами не вище -го порядку. В силу другої теореми Вейєрштраса виявляється, що Чим «простіше» буде наближення функції , тим точніше вона буде представлятися тригонометричним поліномом. Інакше кажучи, для більш простіших функцій, повинно прямувати до нуля швидше, ніж для функцій складної природи. В дипломній роботі буде розглядатися питання, як впливає покращення структурних властивостей функції, що наближається, на порядок спадання її найкращого наближення . Ці результати, головним чином, належать Джексону. Теорема Джексона дає оцінку зверху для найкращого наближення функції многочленами або періодичної функції тригонометричними поліномами. Теорема дає можливість досліджувати властивості найкращих наближень в залежності від диференційованих властивостей функції. Зручною характеристикою структурних властивостей функції є величина, яка називається «модулем неперервності» цієї функції. У роботі вивчаються властивості звичайного модуля неперервності і властивості введені Діціаном і Тотіка, і на їх базі досліджується поведінка найкращих наближень неперервної функції алгебраїчними многочленами. В дипломній роботі будуть згадані деякі результати С. Н. Бернштейна, обмежуючись, розглядом неперервних, – періодичних функцій. С.Н.Бернштейну належить ряд важливих результатів, де він вирішує обернену задачу: задачу характеристики структурно-диференційовних властивостей функції на основі порядку малості її найкращого наближення. В цілому всі ці дослідження дають класифікацію неперервних функцій за порядками їх найкращих наближень. Основні означення та властивості Означення 1.1.Нехай на проміжку задана функція . Візьмемо будь-яке додатне число і розглянемо всі пари чисел і , які належать і задовольняють наступну нерівність
Точна верхня межа чисел називається модулем неперервності функції .
|