Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Биомеханика стопы.




Период 1970-1980-х г. в отличие от настоящего времени, характеризовался значительным интересом к проблемам ортопедической биомеханики. Так еще в 1975 г. X. А. Янсоном опубликован фундаментальный труд «Биомеханика нижней конечности человека», который и по сей день не утратил своей актуальности. Большое внимание уделялось раньше изучению биомеханики движения. Исследования, как правило, проводились для обоснования остеотомии, остеосинтеза и изучения некоторых проблем эндопротезирования, в том числе до и после эндопротезнрования тазобедренного сустава.

Биомеханика - одна из самых старых ветвей биологии. У ее истоков стояли такие величайшие мыслители прошлого, как Леонардо да Винчи, Аристотель, Гален. В своих естественно - научных трудах «Части движения и перемещение животных» Аристотель заложил основу того, что в дальнейшем, спустя много лет, назовут биомеханикой.

Клиническая биомеханика является составной частью медицинских наук: ортопедии, травматологии, протезирования, реабилитологии, лечебной физкультуры, педиатрии, физиологии и многих других. Клиническая биомеханика - научное направление, в котором с позиций механики и общей теории управления с помощью специализированных методов исследования изучается двигательная активность человека в норме и патологии.

Клиническая биомеханика является одним из разделов медицинской биомеханики. Еще в 1929 г. Н.А Бернштейн в статье «Клинические пути современной биомеханики - наметили основные задачи и перспективы биомеханических исследований, в клиники показав их значимость для понимания вопросов патогенеза различных нарушений опорно-двигательного аппарата. В этом случае биомеханика остается в рамках научных исследований, которые без сомнения, вносят значительный вклад в развитие ортопедических знаний.

В нашем понимании, клиническая биомеханика должна включаться в сам процесс диагностики, выбора метода лечения и оценки полученных результатов, являясь обязательным методом обследования в повседневной клинической практике ортопедических отделений, воплощая в жизнь крылатое высказывание М.И. Опенка «Биомеханика - философия ортопедического мышления».

С целью анализа динамики стоп произведем анализ анатомических частей стопы с биомеханической точки зрения.

Стопа состоит из трех частей: предплюсна, плюсна и пальцев (рис.2).

Предплюсна, состоящая из семи костей, представляет заднюю часть стопы. В состав входят: таранная кость, пяточная кость, ладьевидная кость, три клиновидные кости, кубовидная кость.

Плюсна состоит из пяти изогнутых трубчатых костей – предплюсневых костей.

Пальцевая часть состоит их фаланг по 2 на большой палец и 3 на остальные.

Рис.2. Отделы стопы

Выделяют следующие функции стопы:

1.Опорная;

2.Аккомадационная (приспособление к неровной поверхности);

3.Рессорная (компенсация механической нагрузки);

4.Толчковая.

Биомеханика стопы всегда рассматривается с точки зрения ее опорной и рессорной функции. Стопа состоит из большого количества костей, которые образуют два свода: продольный и поперечный. Продольный свод стопы стягивается сухожилиями и мышцами, которые приподнимают внутреннюю сторону стопы. Продольная дуга имеет наружный и внутренний своды, а также срединную "грузовую" пластину. Срединная "грузовая" пластина включает пяточную, кубовидную. II и III клиновидные кости с соответствующими плюсневыми костями, которые обеспечивают основную рессорную функцию стопы и уменьшают сотрясение тела во время движения. Это придает походке уверенность и мягкость [35].

Поперечный свод стопы выполняет преимущественно опорную функцию, что в сочетании с функцией продольного свода стопы обусловливает полноценность работы всей стопы. Поперечная дуга проходит через клиновидные, кубовидную кости и головки плюсневых костей с вершиной на II и III плюсневых костях. Поперечное плоскостопие возникает тогда, когда стопа опирается на головки всех плюсневых костей, а не на первую и пятую, как в норме. При этом нарушается нормальное распределение давления массы человеческого тела на стопу, в результате возникают ее различные деформации. Стопа функционирует нормально как единый анатомо - физиологический комплекс тогда, когда нагрузка, действующая на нее, полностью уравновешивается крепкими связками и мышцами. Деформации чаще всего появляются вследствие ослабления, переутомления или перегрузки мышц и связок стопы и голени, которые обусловливают нормальный свод стопы. При деформации свода стопы постепенно утрачивается рессорная функция и амортизационная роль свода, и внутренние органы подвергаются резким толчкам при различных движениях. Снижению продольного или поперечного сводов стопы предшествуют изменения со стороны связочно - мышечного аппарата стопы, обусловленных функциональной недостаточностью. В организме происходят изменения, в результате которых рессорную функцию стопы начинает выполнять позвоночник, что приводит к изменению его формы [36]

В центре биомеханической концепции стоит положение о сводчатой структуре стопы. По Kiene R.H., Johnson K.A. нагрузка на стопу распределяется следующим образом: через тело таранной кости на пяточный бугор, ладьевидную и клиновидные кости на головки I-III плюсневых костей, образуя внутреннюю продольную дугу, через пяточную и кубовидную кости на головки IV-V плюсневых костей, образуя наружную продольную дугу. Таким образом, стопа не имеет в норме поперечного свода на уровне головок плюсневых костей. Это было подтверждено анатомическими исследованиями. [47]

Morton D.J. [51] различает две продольные оси стопы. Ось проходящая через середину пятки и промежуток между I и II плюсневыми костями – это ось силы, т. е. ось, по которой передаются основные нагрузки при ходьбе. Ось, проходящая через середину пятки и промежуток между II и III плюсневыми костями – ось равновесия или баланса, в которой происходят движения стопы при стоянии.

С точки зрения биомеханики особое положение в строении и функционировании человеческого организма занимает опорно - двигательный аппарат (ОДА). Особые биомеханические функции в ОДА выполняют стопы. Наиболее характерно это проявляется при движении. Наиболее нагружены стопы в фазах контакта (100% нагрузки воспринимается пяткой) и отталкивания (100% нагрузки несет передний свод стопы) (Pedotti). Многие авторы (Перепёлкин А.И., 2009; Root, M.L., 1977; Helal В., 1990) придерживаются мнения о том, что хроническая перегрузка стоп является одним из ведущих факторов развития недостаточности сводов. Структуры, поддерживающие свод стопы делятся на костные, связочные и мышечные. Hicks J.H. [46,52], делает вывод о наибольшей роли связок и подошвенной фасции. Подошвенная фасция является ведущим механизмом поддержания свода, она прогрессивно увеличивает модуль эластичности при увеличении нагрузки. Среди различных деформаций нижних конечностей наиболее часто встречается сочетанное плоскостопие, характеризующееся уплощением продольного и поперечного сводов стопы с поворотом вокруг продольной оси и ее отведением [1, 48, 54].

5.5. Анализ динамики давления под стопами с помощью биомеханического комплекса «ДиаСлед».

У больных с остеохондрозом поясничного отдела позвоночника при незначительном болевом синдроме проявляются стойкие биомеханические нарушения, как при ходьбе, так и при статике [19, 23]. У таких больных снижается скорость шага, увеличивается частота шага, возрастает время периода опоры, и продолжительность периода двойной опоры. В связи с этим для объективной качественной и количественной оценки влияния особенностей лечебной тактики на степень восстановления статической позы и на походку использованы современные биомеханические методы исследования. Для выполнения стабилометрии, динамометрии и подографии использован биомеханический диагностический компьютерный комплекс «ДиаСлед».

С помощью комплекса “ДиаСлед” можно провести полную диагностику опорно-двигательного аппарата, дает возможность контроля эффективности операции, объективной оценки состояния опорно-двигательного аппарата пациента и её динамики во времени. Применение данного диагностического комплекса в научной практике началось совсем недавно [31]. Некоторые исследователи в своих работах с помощью «ДиаСлед» тестирования обнаружили снижение нагрузки на больную ногу и увеличение нагрузки на здоровую конечность, после эндопротезирования тазобедренного сустава, объективно оценили результаты комплексного восстановительного лечения детей с функциональными нарушениями позвоночника, таза [2, 6]. Данный комплекс представляет собой компьютерную систему точной экспресс диагностики состояния опорно - дигательной системы в статике и динамике. У больных с отставанием в росте одной из конечностей, после оперативного уравнивания длины конечностей, объективно выявлен достоверный рост на нагрузки как на удлиненную, так и на интактную конечность с помощью комплекса «ДиаСлед» [39].

Комплекс предназначен для регистрации, отображения и обработки информации о динамике распределения давления между стопой и опорной поверхностью.

Первичная информация в комплекс «ДиаСлед» поступает с высокочастотных измерительных стелек, содержащих датчики давления. При обследовании функциональные стельки вкладывали в обувь. Частота опроса каждого датчика – не менее 100 отсчетов в секунду. Массив измеренных данных поступает в компьютер и обрабатывается программой.

В результате обработки данных получаем следующие параметры:

1. Распределение давления по подошвенной поверхности стоп.

2. Траектория изменения центра давления во времени под каждой из стоп и совместно для обеих стоп.

3. График интегральной нагрузки на каждую стопу.

Анализ распределения давления под стопами.

При ходьбе в норме наибольшее давление наблюдается в области пятки, головок плюсневых костей и 1-го пальца; меньшее - приходится на наружный свод стопы и 2-5 пальцы; минимально - область, соответствующая внутреннему своду стопы. Обычно в норме наблюдается почти равномерное давление на левую и правую стопу (рис.3). При анализе распределения давления выявляют локализацию перегрузок и наоборот, зон сниженного давления, симметричность давления под пятками.

 

Рис.3. Топология распределения давления под стопами.

Анализ траектория центра давления под стопами.

Траектория центра давления (ТЦД) является характеристикой, производной от изменения распределения давления под стопой во времени. При ходьбе в норме каждая стопа выглядит в виде плавной латерально выгнутой дуги, протяженной почти от центра пятки до центра носка стопы (зеленый цвет - для левой стопы, красный – для правой). При этом ТЦД левой и правой стопы «зеркально отображены», общая ТЦД для обеих стоп (голубая линия), выглядит в виде бабочки с одинаковой формой и размерами «крыльев» расположенной на продольной оси между изображениями стелек (рис.4).

В норме расположение ТЦД одинаково для различных шагов. При анализе обращают внимание на плавность, длину шага, расположение относительно продольной оси стопы.

Рис.4. Траектория центра давления.

График интегральной нагрузки: (ГИН) отображается в осях координат, как зависимость от времени суммарного давления на каждую стопу. «Суммарное» означает, что складывается величина давления на каждом датчике стельки или обеих стелек.

Для нормальной ходьбы эти графики выглядят в виде плавных линий с периодами одинаковой продолжительности для обеих стоп.

В структуре этих графиков при ходьбе в норме можно выделить (см. рис.5):

1) Первый максимум нагрузки – соответствует переднему толчку (в норме – пяткой);

2) Главный минимум нагрузки – соответствует одноопорному периоду шага (опора обследуемого на одну конечность, в то время как другую он переносит над опорой);

3) Второй максимум нагрузки – соответствует заднему толчку (в норме – носком).

Рис.5.График суммарного давления на стопу.

Момент максимума вертикального давления Н.А. Бернштейн назвал передним толчком. Момент заднего толчка всегда совпадает с максимумом продольных усилий, продвигающих тело вперед. Между моментами переднего и заднего толчка ноги возникает демпферный провал, соответствующий минимуму вертикального давления. В этот момент общий центр тяжести поднимается выше всего и давление на опору, направление вперед, сменяется давлением, направленным назад, то есть торможение сменяется отталкиванием [4].

Структура графика интегральной нагрузки зависит от скорости ходьбы, в норме структура ГИН одинакова для обеих стоп [30]. При анализе ГИН оценивают плавность, величину переднего и заднего толчка, а также главные минимумы нагрузки для левой и правой стопы.

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 251; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты