Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Продукт 3 не может выпускаться в количестве, превышающем 2,4.




Эти ограничения математически можно сформулировать следую­щим образом.

Пусть P1 и Р2 означают количество картофеля, которое будет закуплено у поставщиков 1 и 2 соответственно. Тогда значения Р1 и Р2 должны подчиняться следующим линейным неравенствам:

0,2Р1 + 0,3Р2 1.8 для продукта 1,

0,2Р1 + 0,1Р2 1.2 для продукта 2, (1)

0,3Р1 + 0,3Р2 2.4 для продукта 3,

P1 0,

P2 0.

Условия неотрицательностиP1 0 и P2 0 приняты потому, что отрицательные значения этих величин (например P1 = -4) не имели бы физического смысла.

На основании системы (1) построим предельные линии ограничения. Для этого по каждому из уравнений

0,2Р1 + 0,3Р2 = 1.8

0,2Р1 + 0,1Р2 = 1.2

0,3Р1 + 0,3Р2 = 2.4

дадим значения крайних координат линии ограничения. Например, для уравнения

0,2Р1 + 0,3Р2 = 1.8 имеем Р1 = 0, тогда Р2 = 1.8 : 0.3 = 6. Для Р2 = 0, Р1 = 1.8 : 0.2 = 9.

Аналогично найдем нулевые координаты для других уравнений. Линии ограничения построены на графиках, приведенных на рис.1

 

 

 

Рис.1. Линии ограничения для системы (1)

 

Стрелка, проведенная от каждой из этих линий, указывает направление, определяемое знаком неравенства в соответствующем ограничении. Для нахождения совместного решения, совместим линии ограничения на одном графике (рис.2), которые характеризуют допустимые стратегии закупок.

 

 

 

Pис.2. Допустимые стратегии закупок

 

Заштрихованная область является совместной областью для системы (1), значения из которой удовлетворяют условиям ограничения. Все значения Р1 и P2удовлетворяющие условиям (1), представ­лены на рис.6 заштрихованной областью.

При этом необходимо сформулировать условие оптимизации и построить целевую функцию решения задачи. Оптимальными являются такие значения P1 и Р2, при которых относительная прибыль максимальна, если при этом выполняются условия (1). Таким образом, задача оптимизации сводится к мак­симизации выражения

5Р1 + 6Р2 Þ max, (2)

при наличии ограничений (1).

Каждая из .множества параллельных прямых, изображенных на этом рисунке, соответствует различным комбинациям значений P1 и Р2, приводящим к одному и тому же значению линейной целевой функции

5Р1 + 6Р2.

Самая верхняя линия, содер­жащая точку в области допустимых с точки зрения условий (1) значений, определяет мак­симальное значение целевой функции. Оптимальное реше­ние задается именно этой точ­кой.

Легко убедиться графиче­ски. что в рассматриваемом случае оптимальное решение является единственным; оно на­ходится на пересечении пря­мых, определяемых двумя пер­выми условиями (1). Следовательно, оптимальные значения Р1 и Р2 можно вычислить путем совместного решения двух линейных уравнений

 

0,2Р1 + 0,3Р2 = 1,8 для продукта 1,

0,2Р1 + 0,1Р2 = 1,2 для продукта 2. (3)

 

Решая данную систему линейных уравнений методом подстановки или Жордана-Гаусса можно определить, что оптимальные значения Р1 = 4,5, а Р2 = 3. Тогда значение целевой функции принимает значение 40,5.

Рассмотренная задача служит иллюстрацией модели линейного программирования. В случаях практического при­менения линейного программирования количество ограничений обыч­но достигает нескольких сотен, а количество переменных — нескольких тысяч.

Способы построения такого рода моделей, а также практические методы нахождения оптимальных решений с использованием электронных таблиц приведены ниже.

 


Поделиться:

Дата добавления: 2015-09-13; просмотров: 49; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты