![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Формула прямоугольниковЗаменим площадь криволинейной трапеции aАВb (рис. 9.2), численно равную интегралу (9.1), на сумму площадей левосторонних или правосторонних прямоугольников, то есть на y0h + y1h + … + yn-1 h или y1h + y2h + … + ynh. Тогда интеграл (9.1) приближенно выражается любой из формул:
Это формулы левосторонних и правосторонних прямоугольников.
где
то для интеграла (1) получаем приближенную формулу
Это формула трапеций. Число n произвольно, но чем оно больше, тем с большей точностью будет получено значение интеграла (9.1). Если f"(x) существует и ограничена на отрезке [a,b], то погрешность Rn формулы (9.5) оценивается неравенством
9.4. Формула парабол (Формула Симпсона).Разделим отрезок [a, b] на четное число равных частей n = 2m. Площадь криволинейной трапеции, соответствующей первым двум отрезкам [х0, х1] и [х1, х2] и ограниченной заданной кривой y = f(x), заменим площадью параболической трапеции, которая ограничена параболой, проходящей через три точки М0(х0, у0), М1(х1, у1), М2(х2, у2), и имеющей ось, параллельную оси Оу (рис. 9.4). Аналогичным образом поступим и для других пар отрезков [х2, х3], [х3, х4], …, [х2m-2, х2m-1], [х2m-1, х2m]. Площади построенных параболических трапеций соответственно равны
а их сумма даст приближенное значение интеграла (9.1)
Это формула Симпсона. Здесь число 2m точек деления отрезка [a,b] произвольно, но чем больше это число, тем точнее значение интеграла (9.1). Если f"(x) существует и ограничена на отрезке [a,b], то для погрешности Rnформулы (9.8) справедлива следующая оценка:
где
ЗАМЕЧАНИЕ. В связи с трудностями оценки четвертой производной подынтегральной функции f(x), погрешность Rn совершаемую при вычислении определенного интеграла (9.1), по формуле (9.8), можно оценить по правилу Рунге
где Jn и J2n – приближенное значение интеграла, вычисленное по формуле парабол, соответственно с шагом h и
ЛЕКЦИЯ 10. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Невелико число типов дифференциальных уравнений, допускающих решение в квадратурах (сведение к дифференциальному уравнению с разделяющими переменными с последующим интегрированием). Многообразие видов уравнений, встречающихся при решении физических и технических вопросов, привело к созданию большого числа методов приближенного решения дифференциальных уравнений, основанных на самых различных идеях. Все эти методы в зависимости от формы, в которой они представляют решение, можно разделить на три основные группы: 1. Аналитические методы, дающие приближенное решение дифференциального уравнения в виде аналитического выражения; 2. Графические методы, дающие приближенное решение в виде графиков. 3. Численные методы, дающие приближенное решение в виде таблицы. Остановимся на численных методах.
|