КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Оценка погрешности интерполяционного многочлена Лагранжа
Интерполяционный многочлен Лагранжа Ln(x) совпадает с функцией f(x) в узлах интерполяции х0, х1, х2, …, хn. Чтобы оценить степень приближения интерполяционного многочлена в точках, отличных от узлов интерполяции, надо сделать дополнительные предположения о поведении функции f(x), заданной таблично. Будем считать, что функция f(x) дифференцируема n + 1 раз на отрезке [a,b]. Погрешность . Введем вспомогательную функцию . Функция имеет n + 1 корень, т.е. , т.к. в узлах интерполяции и один из сомножителей . Подберем k таким образом, чтобы , т.е. , тогда получим . Определим численное значение коэффициента k. Для этого продифференцируем n + 1 раз. Так как обращается в ноль на [a,b] в n + 2 точках: х0, х1, х2,…, хn, то на основании теоремы Ролля производная от обращается в ноль , по крайней мере n + 1 раз на интервале [a, b]. Применим снова теорему Ролля к функции . Вторая производная обращается в ноль не менее n раз на интервале (а, b). Продолжая этот процесс, придем к выводу, что производная (n + 1) порядка функции имеет хотя бы один корень, т.е. . Тогда
, но т.к.
.
Получим ,
.
Полагая, что Mn+1 = max | f (n+1)(x)| получаем, оценку погрешности х Î [a, b] для интерполяционного многочлена Лагранжа
. ЛЕКЦИЯ 7. КОНЕЧНЫЕ РАЗНОСТИ Табулирование функций в большинстве случаев производится для равноотстоящих значений аргумента, т.е. , где i = 0, 1, 2, …, n, а h – шаг интерполяции. Для вывода интерполяционных формул для равноотстоящих узлов интерполяции введем понятие «конечной разности». Назовем конечной разностью первого порядка разность между значениями функции в соседних узлах интерполяции , , … (7.1) ,
где h = const, или в общем виде (7.2) или .
Из конечных разностей 1-го порядка можно образовать конечные разности 2-го порядка ; .
В общем виде конечная разность n-ого порядка записывается так:
.
|