КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Приближение линейными сплайнами
Пусть m = 1 . Тогда общее число Q свободных параметров равно 2N . Поставим вопрос о построении сплайна совпадающего с функцией f(x) в точках x0, x1,…, xn .
Получим систему уравнений
Эта система распадается на системы уравнений относительно коэффициентов отдельных многочленов
,
отсюда находим
Многочлен Pn1(x) является многократно рассматривавшимся интерполяционным многочленом первой степени с узлами интерполяции xn-1, xn. Широкое распространение сплайнов во многом вызвано тем, что они являются в определенном смысле наиболее гладкими функциями среди функций, принимающих заданные значения. Сплайны степени выше первой в случае гладкой f(x) хорошо приближают не только саму функцию, но и ее производные.
ЛЕКЦИЯ 9. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ФУНКЦИЙ Известно, что не для всякой функции ее первообразная выражается через элементарные функции. В этих случаях вычисление определенных интегралов по формуле Ньютона-Лейбница затруднительно и применяются различные методы приближенного вычисления определенных интегралов. Пользуясь геометрическим смыслом определенного интеграла, рассмотрим три приближенных формулы, с помощью которых численное интегрирование проводится с любой степенью точности.
|