КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Контрольная работа № 5Вычислить значение интеграла , , а = 0, b = 0, . Выберем формулу для приближенного вычисления заданного определенного интеграла. Для чего найдем по формулам (9.4), (9.6), (9.10) число n точек разбиения отрезка [0,1] на частичные, которые обеспечат требуемую точность при вычислении по формулам прямоугольников, трапеций и парабол соответственно. А затем остановимся на той из приближенных формул, для которой число n будет наименьшим. Чтобы воспользоваться формулами (9.4), (9.6), (9.10), вычислим и оценим первую, вторую и четвертую производные подынтегральной функции на отрезке [0,1]: , , , и так как функция f(x) и ее производные убывают на отрезке [0,1], то , , . Найдем n. Для формулы прямоугольников из (9.4) получаем . Для формулы трапеций из (9.6) получаем , . Для формулы парабол из (9.10) получаем ; .
Таким образом, наименьшего объема вычислений при одинаковой точности потребует формула парабол (9.8) – n = 2m = 8 (n должно быть четным), применяя которую и вычислим приближенно заданный интеграл. По числу n = 2m = 8 найдем шаг интегрирования . Составим таблицу (табл.1.) значений подынтегральной функции в точках xi = ih, , записывая ординаты с четными и нечетными номерами в разные столбцы. В последней строке таблицы запишем результаты суммирования по этим столбцам. Вычисление будем вести с четырьмя знаками после запятой, а окончательный ответ округлим до трех знаков после запятой. Применяя формулу парабол (9.8), получим Вычислим заданный интеграл по формуле Ньютона–Лейбница . Итак, требуемая точность вычислений достигнута.
Таблица 1
|