![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ФОРМИРОВАНИЕ ПРОСТРАНСТВАДВУМЕРНОЕ ПРОСТРАНСТВО. Для геометрического построения пространства Е2возьмем точку, не принадлежащую прямой n (или пространство Е1), и установим взаимно однозначное соответствие между прямыми пучка и точками прямой. Объединение точек всех этих прямых (вместе с их несобственными точками) будет определять двумерное пространство Е2(рис. 11, а). Если не учитывать несобственные точки, то пришлось бы «выбросить» из Е2 прямую, параллельную прямой n.
ЧЕТЫРЁХМЕРНОЕ ПРОСТРАНСТВО. Начнем с аналогичного построения четырехмерного пространства Е4. Возьмем точку, не принадлежащую трехмерному евклидову пространству Е3, дополненному несобственными элементами, и установим взаимно однозначное соответствие между прямыми гиперсвязки и точками 3-пространства (рис.11, в). Объединение точек всех этих прямых будет определять пространство Е4. Аналогично строится многомерное пространство. Таким образом, мы пришли к идее многомерного пространства. Понятие многомерного пространства или многомерного множества довольно абстрактное, но и в евклидовом пространстве на каждом шагу встречаются такие множества. Например, прямая – одномерное множество точек (самое простое множество), множество сфер и множество прямых трёхмерного пространства – четырехмерны, множество конусов вращения – шестимерно; цилиндров вращения – пятимерно; множество сфер, касающихся данной плоскости, - трёхпараметрическое множество. Рассмотрим подробнее примеры и приемы подсчета параметров. 1.6. ПРИЁМЫ ПОДСЧЕТА ПАРАМЕТРОВ
1. Эталон n-мерного множества. За эталон n-мерного множества принимают множество Rn, элементом которого служит n-ка вещественных чисел а1, а2, а3, …, аn, то есть n-я декартова степень множества вещественных чисел. 2.Взаимно однозначное и взаимно непрерывное отображение данного множества на эталон. Например, устанавливая взаимно однозначное соответствие между прямыми связки и точками плоскости или устанавливая взаимно однозначное соответствие между пучком плоскостей и точками прямой. Два важных замечания Замечание 1. Для бесконечных множеств имеют место два факта, кажущиеся на первый взгляд парадоксальными, поскольку они не имеют места для конечных множеств.
|