КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Уравнение бегущей волныБегущими волнами называются волны, которые переносят энергию в пространстве. Основной характеристикой бегущей волны является плотность потока энергии переносимой данной волной. Важными примерами бегущих волн является плоская и сферическая волны. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне — множество концентрических сфер. Уравнением бегущей волны – называется зависимость от координат и времени скалярных или векторных величин, характеризующих колебания среды при прохождении в ней рассматриваемой волны. Найдем вид функции ξ в случае бегущей волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось х совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси х и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от х и t: ξ = ξ{х, t). Пусть колебания точек, лежащих в плоскости х=0 (рис.17.2.), имеют вид x(0,t)=А соs(wt+a), Найдем вид колебания точек в плоскости, соответствующей произвольному значению X. Для того чтобы пройти путь от плоскости х = 0 до этой плоскости, волне требуется время τ=x/υ где υ — скорость распространения волны. Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на τ от колебаний частиц в плоскости х = 0, т. е. будут иметь вид (17.2.1) Выражение (17.2.1) является уравнением плоской волны (и продольной и поперечной), распространяющейся в направлении х, где А=const - амплитуду волны; α - начальная фаза волны (определяется выбором начал отсчета х и t); -фаза плоской волны. Если ввести волновое число: , Придем к следующему уравнению плоской волны, распространяющейся вдоль оси х: x(x,t)=А соs (wt- kx +a). (17.2.2) или в экспоненциальной форме: Зафиксируем какое-либо значение фазы, стоящей в уравнении волны (17.2.2) или (wt- kx+a)=const Продифференцировав данное выражение, получим: Таким образом, скорость распространения волны в этом уравнении, есть скорость перемещения фазы, в связи с чем, ее называют фазовой скоростью.
|