КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Вплив умов закріплення кінців стрижня на величину критичної силиВище розглянуто так званий основний випадок навантаження і закріплення кінців стиснутого стрижня — стрижня із шарнірно обпертими кінцями. Як було показано, після втрати стійкості на довжині стрижня укладається тільки одна напівхвиля . Розглянемо інші випадки закріплення кінців стрижня: 1. Стрижень довжиною жорстко затиснений одним кінцем і стиснутий поздовжньою силою, прикладеною до вільного кінця (рис. 5,а).
Рис. 5. Стрижень, жорстко затиснений одним кінцем Порівнюючи рис. 14.5, а й б, бачимо, що вигнута вісь стрижня, жорстко затиснутого одним кінцем, перебуває в таких же умовах, як і верхня половина стрижня довжиною із шарнірно закріпленими кінцями. Таким чином, критична сила для стрижня з одним затиснутим, а іншим вільним кінцем така ж, як і для стрижня із шарнірно обпертими кінцями при довжині , тобто
При цьому вигнута вісь стрижня (рис. 14.5, а) має вигляд половини напівхвилі синусоїди. 2. Стрижень довжиною , у якого обидва кінці жорстко затиснені (рис.6). Після втрати стійкості стрижня внаслідок симетрії середня його частина довжиною працює в тих же умовах, що й стрижень при шарнірно обпертих кінцях. При цьому утворяться дві напівхвилі: середня, довжиною , і дві крайні половинки напівхвилі довжиною . Рис. 6. Стрижень, у якого обидва кінці жорстко затиснені Критичну силу в цьому випадку знаходимо з рівняння (14) при :
3. Стрижень довжиною забитий одним кінцем і шарнірно обпертий на іншому (рис. 7). Після втрати стійкості права частина стрижня має вигляд напівхвилі синусоїди. З порівняння рис. 7 і 5, б знаходимо, що ділянка довжиною перебуває в таких же умовах, як і стрижень із шарнірно закріпленими кінцями. Виходить,
Рис. 7. Стрижень, затиснений одним кінцем і шарнірно обпертий іншим Співвідношення (14), (17) – (19) можна об'єднати в одну формулу
де — наведена довжина стрижня; — фактична довжина стрижня; — коефіцієнт приведення довжини. Таким чином, різні випадки обпирання й навантаження стрижня приводяться до основного випадку введенням у формулу наведеної довжини . Це поняття вперше було уведено Ф. С. Ясинським. З формули Ейлера (20) видно, що критичне навантаження залежить від найменшої жорсткості , довжини стрижня й коефіцієнта . Рис. 8. Значення коефіцієнтів приведення довжини
|