КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Розповсюдження оптичної хвилі у вільному просторіНехай одинична за інтенсивністю плоска хвиля (Рис. 1.4.1), яка розповсюджується в середовищі з показником заломлення освітлює тонкий транспарант з пропусканням (в загальному випадку комплексним) . Відповідно до (1.2.5) поле безпосередньо за транспарантом дорівнює: (1.4.1) Тоді можна вважати що кожна точка поля за транспарантом є точковим джерелом з модулем амплітуди та фазою згідно (1.4.1). Виберемо довільне точкове джерело, розташоване в точці . З такого точкового джерела розповсюджується сферична хвиля, яка в площині в одномірному випадку описується комплексною амплітудою: (1.4.2) де . (1.4.3) Для двомірного випадку множник в (1.4.2) трансформується в множник . Поле в точці є результатом інтерференції всіх таких хвиль, які надійшли з плоскості : . (1.4.4) Будемо вважати, що поперечні розміри транспаранта та розміри області в площині де поле аналізується малі у порівнянні з відстанню між площинами та . Тоді може бути апроксимоване як: . (1.4.5) Додамо, що амплітудний множник може бути апроксимований ще більш грубо . Відповідно вираз (1.4.4) перепишеться у вигляді: . (1.4.4) Вираз (1.4.4) іноді називають перетворенням Френеля від функції . Цей вираз описує розповсюдження промодульованої транспарантом хвилі в області дифракції Френеля. Зробимо ще одне наближення: (1.4.5) Тоді (1.4.4) набуває вигляду: . (1.4.6) де . Вираз (1.4.6) описує розповсюдження промодульованої транспарантом хвилі в області дифракції Фраунгофера і є перетворенням Фур’є в координатах . 1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема Нехай плоска хвиля (Рис. 1.4.2) освітлює транспарант . Відповідно поле зразу ж за транспарантом дорівнює його пропусканню. Впритул до транспаранта розташований об’єктив з фокусною відстанню . Після проходження лінзи поле описується комплексною амплітудою: (1.4.7) На деякій відстані згідно з (1.4.4) поле має такий вигляд:
. (1.4.8) З (1.4.8) випливає, що при , з точністю до квадратичного фазового множника дорівнює Фур’є-образу від . Можна показати, що у випадку коли транспарант, розташований на деякій відстані до лінзи (або навіть позаду неї), поле також пропорційне Фур’є-образу від і квадратичному фазовому множнику , якій зникає лише у випадку коли , тобто коли транспарант, розташований в передній фокальній площині об’єктива. Проте, у будь-якому випадку, інтенсивність поля в площині завжди дорівнює спектру потужності від (1.4.9) Природно, що ці співвідношення залишаються в силі для систем інтегральної оптики, а само перетворення Фур’є в одновимірному варіанті реалізується планарними фокусуючими елементами. Щодо операцій згортки та кореляції, то, як бачимо, з виразів 1.3.9,10 вони можуть бути реалізовані на основі операції множення та перетворення Фур’є.
|