Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Базис на плоскости и в пространстве.




Определение. Базисом на плоскости называются два любых линейно независимых вектора.

Из теоремы 2 (см. п. 4) следует, что два любых неколлинеарных вектора образуют базис. Пусть любой вектор на плоскости, а векторы и образуют базис. Так как на плоскости всякие три вектора линейно зависимы, то вектор линейно выражается через векторы базиса, т. е. выполняется соотношение

.

Если вектор представлен в виде (3), то говорят, что он разложен по базису образованному векторами и . Числа и называют координатами вектора на плоскости относительно базиса и

1 . Разложение вектора по и является единственным

Доказательство. Допустим, что наряду с разложением (3) имеет место разложение

Покажем, что в этом случае Действительно, вычитая равенство (4) из равенства (3), получаем соотношение

(Возможность почленного вычитания равенств (4) и (3) и производимой группировки членов вытекает из свойств линейных операций над векторами (см. п. 2).) Так как векторы базиса , линейно независимы, то и . Отсюда , т.е. разложение вектора по базису , единственно.

Определение. Базисом в пространстве называются три любых линейно независимых вектора.

Из теоремы 2 (см. п. 5) следует, что три любых некомпланарных вектора образуют базис. Как и в случае плоскости, устанавливается, что любой вектор разлагается по векторам , и

причем это разложение единственное.

Числа , , называют координатами вектора в пространстве относительно базиса , и .

Основное значение базиса состоит в том, что линейные операции над векторами при задании базиса становятся обычными линейными операциями над числами - координатами этих векторов.

Теорема . При сложении двух_векторов и их координаты (относительно любого базиса и или любого базиса , и ) складываются. При умножении вектора на любое число, а все его координаты умножаются на это число.

Доказательство. Пусть, например,

.

Тогда в силу свойств линейных операций (см. п. 2)

В силу единственности разложения по базису , , теорема для этого базиса доказана.

 

 


Поделиться:

Дата добавления: 2015-04-11; просмотров: 167; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты