Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Метод окаймления миноров




Теорема

Ранг матрицы равен наибольшему порядку отличного от нуляминору.

На этой теореме базируется еще один метод нахождения ранга матрицы - метод окаймления миноров. Суть этого метода заключается в нахождении миноров, начиная с низших порядков и двигаясь к более высоким. Если минор -го порядка не равен нулю, а все миноры -го равны нулю, то ранг матрицы будет равен .

Пример

Задание. Найти ранг матрицы , используя метод окаймления миноров.

Решение. Минорами минимального порядка являются миноры первого порядка, которые равны элементам матрицы . Рассмотрим, например, минор . расположенный в первой строке и первом столбце. Окаймляем его с помощью второй строки и второго столбца, получаем минор ; рассмотрим еще один минор второго порядка, для этого минор окаймляем при помощи второй строки и третьего столбца, тогда имеем минор , то есть ранг матрицы не меньше двух. Далее рассматриваем миноры третьего порядка, которые окаймляют минор . Таких миноров два: комбинация третьей строки со вторым столбцом или с четвертым столбцом. Вычисляем эти миноры:

так как содержит два пропорциональных столбца (первый и второй); второй минор

преобразуем следующим образом: к первой строке прибавим третью, а ко второй две третьих:

И так как первая и вторая строки пропорциональны, то минор равен нулю.

Таким образом, все окаймляющие миноры третьего порядка равны нулю. А, значит, ранг матрицы равен двум:

Ответ.

 

 


Поделиться:

Дата добавления: 2015-04-11; просмотров: 195; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты