КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Решение. 1. Пентин-1 реагирует с аммиачным раствором оксида серебра (выпадает осадок):⇐ ПредыдущаяСтр 13 из 13 1. Пентин-1 реагирует с аммиачным раствором оксида серебра (выпадает осадок): НСºС-СН2-СН2-СН3 + [Ag(NH3)2]OH → AgСºС-CН2-CH2-CH3 + 2NH3+H2O 2. Циклопентен обесцвечивает бромную воду: 3. Циклопентан не реагирует ни с бромной водой, ни с аммиачным раствором оксида серебра. Пример 3. В пяти пронумерованных пробирках находится гексен, метиловый эфир муравьиной кислоты, этанол, уксусная кислота, водный раствор фенола. Установлено, что при действии металлического натрия на вещества из пробирок 2, 4, 5 выделяется газ. С бромной водой реагируют вещества из пробирок 3, 5; с аммиачным раствором оксида серебра – вещества из пробирок 1 и 4. С водным раствором гидроксида натрия реагируют вещества из 1, 4, 5 пробирок. Установите содержимое пронумерованных пробирок. Решение. Для распознавания составим таблицу 2 и сразу оговоримся, что в условии данной задачи не учитывается возможность ряда взаимодействий, например, метилформиата с бромной водой, фенола с раствором гидроксида диамминсеребра. Знаком – обозначим отсутствие взаимодействия, знаком + – происходящую химическую реакцию. Таблица 2 Взаимодействия определяемых веществ с предложенными реактивами
Пример 4. В шести пронумерованных пробирках находятся растворы: изопропилового спирта, гидрокарбоната натрия, уксусной кислоты, анилина солянокислого, глицерина, белка. Как определить, в какой пробирке находится каждое из веществ? Решение. Сразу предупреждаем, что здесь мы предлагаем словесное объяснение идентификации веществ. При добавлении бромной воды к растворам в пронумерованных пробирках образуется осадок в пробирке с анилином солянокислым в результате его взаимодействия с бромной водой. Идентифицированным раствором анилина содянокислого действуют на остальные пять растворов. В пробирке с раствором гидрокарбоната натрия выделяется углекислый газ. Установленным раствором гидрокарбоната натрия действуют на остальные четыре раствора. В пробирке с уксусной кислотой выделяется углекислый газ. На оставшиеся три раствора действуют раствором сульфата меди (II), который вызывает появление осадка в результате денатурации белка. Для идентификации глицерина готовят гидроксид меди (II) из растворов сульфата меди (II) и гидроксида натрия. Гидроксид меди (II) добавляют к одному из оставшихся двух растворов. В случае растворения гидроксида меди (II) с образованием прозрачного раствора глицерата меди ярко-синего цвета идентифицируют глицерин. Оставшийся раствор является раствором изопропилового спирта. Пример 5. В семи пронумерованных пробирках находятся растворы следующих органических соединений: аминоуксусной кислоты, фенола, изопропилового спирта, глицерина, трихлоруксусной кислоты, солянокислого анилина, глюкозы. Используя в качестве реактивов только растворы следующих неорганических веществ: 2% раствор сульфата меди (II), 5% раствор хлорида железа (III), 10% раствор гидроксида натрия и 5% раствор карбоната натрия, определите органические вещества, содержащиеся в каждой пробирке. Решение. Сразу предупреждаем, что здесь мы предлагаем словесное объяснение идентификации веществ. При добавлении раствора хлорида железа (III) к растворам, взятым из пронумерованных пробирок, образуется красное окрашивание с аминоуксусной кислотой и фиолетовое окрашивание с фенолом. При добавлении раствора карбоната натрия к образцам растворов, взятых из оставшихся пяти пробирок, выделяется углекислый газ в случае трихлоруксусной кислоты и солянокислого анилина, с остальными веществами реакция не идет. Солянокислый анилин можно отличить от трихлоруксусной кислоты при добавлении к ним гидроксида натрия. При этом в пробирке с солянокислым анилином образуется эмульсия анилина в воде, в пробирке с трихлоруксусной кислотой видимых изменений не наблюдается. Определение изопропилового спирта, глицерина и глюкозы проводят следующим образом. В отдельной пробирке смешиванием 4-х капель 2% раствора сульфата меди (II) и 3 мл 10% раствора гидроксида натрия получают осадок гидроксида меди (II) голубого цвета, который делят на три части. К каждой части приливают отдельно по несколько капель изопропилового спирта, глицерина и глюкозы. В пробирке с добавлением изопропилового спирта изменений не наблюдается, в пробирках с добавлением глицерина и глюкозы осадок растворяется с образованием комплексных соединений интенсивно-синего цвета. Различить образовавшиеся комплексные соединения можно нагреванием на горелке или спиртовке верхней части растворов в пробирках до начала кипения. При этом в пробирке с глицерином не будет наблюдаться изменения окраски, а в верхней части раствора глюкозы появляется желтый осадок гидроксида меди (I), переходящий в красный осадок оксида меди (I), нижняя часть жидкости, которую не нагревали, остается синей. Пример 6[1]. В шести пробирках находятся водные растворы глицерина, глюкозы, формалина, фенола, уксусной и муравьиной кислоты. Используя находящиеся на столе реагенты и оборудование, определите вещества в пробирках. Опишите ход определения. Напишите уравнения реакций, на основании которых произведено определение веществ. Реагенты: CuSO4 5%, NaOH 5%, NaHCO3 10%, бромная вода. Оборудование: штатив с пробирками, пипетки, водяная баня или плитка.
Решение 1. Определение кислот. При взаимодействии карбоновых кислот с раствором гидрокарбоната натрия выделяется углекислый газ: HCOOH + NaHCO3 → HCOONa + CO2↑ + H2O; CH3COOH + NaHCO3 → CH3COONa + CO2↑ + H2O. Различить кислоты можно реакцией с бромной водой. Муравьиная кислота обесцвечивает бромную воду HCOOH + Br2 = 2HBr + CO2. С уксусной кислотой бром в водном растворе не реагирует. 2. Определение фенола. При взаимодействии глицерина, глюкозы, формалина и фенола с бромной водой только в одном случае наблюдается помутнение раствора и выпадение белого осадка 2,4,6-трибромфенола. Глицерин, глюкоза и формалин окисляются бромной водой, при этом наблюдается обесцвечивание раствора. Глицерин в этих условиях может окислиться до глицеринового альдегида или 1,2-дигидроксиацетона . Дальнейшее окисление глицеринового альдегида приводит к глицериновой кислоте. HCHO + 2Br2 + H2O → CO2 + 4HBr. Реакция со свежеприготовленным осадком гидроксида меди (II) позволяет различить глицерин, глюкозу и формалин. При добавлении глицерина к гидроксиду меди (II) голубой творожистый осадок растворяется и образуется ярко-синий раствор комплексного глицерата меди. При нагревании окраска раствора не меняется. При добавлении глюкозы к гидроксиду меди (II) также образуется ярко-синий раствор комплекса . Однако при нагревании комплекс разрушается и альдегидная группа окисляется, при этом выпадает красный осадок оксида меди (I) . Формалин реагирует с гидроксидом меди (II) только при нагревании с образованием оранжевого осадка оксида меди (I) HCHO + 4Cu(OH)2 → 2Cu2O↓ + CO2 + 5H2O. Все описанные взаимодействия можно для удобства определения представить в таблице 3. Таблица 3 Результаты определения
Литература
1. Травень В. Ф. Органическая химия: Учебник для вузов: В 2 т. / В. Ф. Травень. – М.: ИКЦ «Академкнига», 2006. 2. Смолина Т. А. и др. Практические работы по органической химии : Малый практикум. Учеб пособие для вузов. / Т. А. Смолина, Н. В. Васильева, Н. Б. Куплетская. – М.: Просвещение, 1986. 3. Кучеренко Н. Е. и др. Биохимия: Практикум /Н. Е. Кучеренко, Ю. Д. Бабенюк, А. Н. Васильев и др. – К.: Выща школа, Изд-во при Киев. ун-те, 1988. 4. Шапиро Д. К. Практикум по биологической химии. – Мн: Вышэйшая школа, 1976. 5. В. К. Николаенко. Решение задач повышенной сложности по общей и неорганической химии: Пособие для учителя, Под ред. Г.В. Лисичкина – К.: Рад.шк., 1990. 6. С. С. Чуранов. Химические олимпиады в школе: Пособие для учителей. – М.: Просвещение, 1962. 7. Московские городские химические олимпиады: Методические рекомендации. Составители В.В. Сорокин, Р.П. Суровцева – М,: 1988 8. Современная химия в задачах международных олимпиад. В. В. Сорокин, И. В. Свитанько, Ю. Н. Сычев, С. С. Чуранов – М.: Химия, 1993 9. Е. А. Шишкин. Обучение учащихся решению качественных задач по химии. – Киров, 1990. 10. Химические олимпиады в задачах и решениях. Части 1 и 2. Составители Кебец А. П., Свиридов А. В., Галафеев В. А., Кебец П. А. – Кострома: Изд-во КГСХА, 2000. 11. С. Н. Перчаткин, А. А. Зайцев, М. В. Дорофеев. Химические олимпиады в Москве.– М.: Изд-во МИКПРО, 2001. 12. Химия 10-11: Сборник задач с решениями и ответами / В. В. Сорокин, И. В. Свитанько, Ю. Н. Сычев, С. С. Чуранов.– М.: «Издательство АСТ»: ООО «Издательство АСТРЕЛЬ», 2001. [1] Данная задача была предложена учащимся 11 класса на практическом туре III (регионального) этапа Всероссийской олимпиады школьников по химии в 2009-2010 учебном году.
|