![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задача К4⇐ ПредыдущаяСтр 13 из 13 Прямоугольная пластина (рис. К4.0 – К4.5) или круглая пластина радиуса R=60 см (рис. К4.6 − К4.9) вращается вокруг неподвижной оси по закону j = f1(t), заданному в табл. К4. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 6, 9 ось вращения перпендикулярна плоскости пластины и проходит через т. О (пластина вращается в своей плоскости); на рис. 3, 4, 5, 7, 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой BD (рис. 0 − 5) или по окружности радиуса R (рис. 6 − 9) движется т. М; закон ее относительного движения, т.е. зависимость s = AM = f2(t) (s выражено в см, t - в секундах), задан в таблице отдельно для рис. 0 − 5 и для рис. 6 − 9; там же даны размеры b и l. На рисунках т. М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится с противоположной стороны). Требуется определить скорость и ускорение точки в момент времени t1=1c. Указания.Задача К4 – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и ускорений при сложном движении. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1=1c, и изобразить точку именно в этом положении ( а не в произвольном, показанном на рисунках к задаче). В случаях, относящихся к рис. 6 − 9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t1=1 c (с помощью угла между радиусами СМ и СА в этот момент). ЗАМЕЧАНИЕ. В задачах на рис. 3,4,5,7,8 векторы
Таблица К4
Дано: R = 0,5 м; j = 2t3 - 4t2; s = (pR/6)(7t – 2t2) (j – в радианах, s – в метрах, t – в секундах). Определить: vаб и ааб в момент времени t1=1c. Решение. Рассмотрим движение т. М как сложное, считая ее движение по дуге ADB относительным, а вращение диска – переносным движением. Тогда абсолютная скорость
где, в свою очередь, Определим все характеристики относительного и переносного движений. 1. Относительное движение.Это движение происходит по закону: s = AM = (pR/6)(7t – 2t2). (2) Сначала установим, где находится точка М на дуге ADB в момент времени t1. Полагая в уравнении (2) t = 1 c, получим
Изображаем на рис. К4 т. М1 в положении, определяемом этим углом. Теперь находим числовые значения uОТ, где rОТ – радиус кривизны относительной траектории, т.е. дуги ADB. Для момента времени t1 = 1c, учитывая, что R = 0,5 м, получим:
Знаки показывают, что вектор 2. Переносное движение.Это движение (вращение) происходит по закону j = 2t3 - 4t2. Найдем угловую скорость ω и угловое ускорение ε переносного вращения: ω = при t1 = 1 c Знаки указывают, что при t1 = 1 c направление ε совпадает с направлением положительного отсчета угла φ, а направление ω ему противоположно; отметим это на рис. К4 соответствующими дуговыми стрелками. Тогда в момент времени t1 = 1 c, учитывая равенства (4), получим
Изображаем на рис. К4 и К4а векторы 3. Кориолисово ускорение.Т. к. угол между вектором
Направление 4. Определение и направлена в сторону большей скорости. По теореме о сложении ускорений:
Отсюда находим значение ааб в момент времени t1 = 1c: Ответ: vаб = 0,215 м/с; ааб = 0,957 м/с2.
|