Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Геометрическая интерпретация решения ЗЛП




Читайте также:
  1. Gt; во-вторых, когнитивной оценкой (cognitive appraisal), которую человек дает событию, требующему разрешения.
  2. III. Примеры решения задач.
  3. III. Примеры решения задач.
  4. III. Примеры решения задач.
  5. IV. Примеры решения задач.
  6. IV. Примеры решения задач.
  7. IV. Примеры решения задач.
  8. IV. Примеры решения задач.
  9. IV. Примеры решения задач.
  10. IV. Примеры решения задач.

Геометрическая интерпретация экономических задач дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств. ЗЛП с двумя переменными всегда можно решить графически, а с большим количеством – только при условии, что , где n – количество переменных, m – количество ограничений канонической записи ЗЛП.

Пусть дана задача:

.

Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений задает на плоскости некоторую полуплоскость (выпуклое множество). Пересечение любого числа выпуклых множеств является выпуклым множеством, следовательно, ОДР – выпуклое множество.

Примеры ОДР при решении ЗЛП графическим методом:

1) выпуклый многоугольник (рис. 2.1)

Рис. 2.1

2) неограниченная многоугольная область (рис.2.2)

Рис. 2.2

Перейдем к геометрической интерпретации целевой функции. Пусть ОДР ЗЛП – непустое множество А1А2А3А4А5 (рис. 2.1). Выберем произвольное значение целевой функции F(x)=c, c=const. Следовательно,(2.1) прямая линия.

Считая в равенстве (2.1) с параметром, получим уравнение семейства параллельных прямых, называемых линиями уровня целевой функции.

Как установить направление возрастания (убывания) целевой функции по и ? Частные производные и показывают скорости изменения вдоль осей и соответственно. Вектор – градиент целевой функции, показывает направление наискорейшего возрастания функции . Вектор указывает направление наискорейшего убывания функции и называется антиградиентом. Градиент перпендикулярен к линиям уровня .


Дата добавления: 2014-12-03; просмотров: 13; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты