![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задача выпуклого программированияПусть дана система неравенств вида: причем все функции Определение 10.1. Точка (x*, λ*) называется седловой точкой функции Лагранжа, если n-мерная точка x* является точкой минимума функции L(x, λ*), а m-мерная точка λ* – точкой максимума функции L(x*, λ), так что
Теорема 10.1. (Условие регулярности Слейтера) Множество Х допустимых решений ЗВП удовлетворяет условию регулярности Слейтера, если существует по крайне мере одно точка Теорема 10.2 (теорема Куна-Таккера). Чтобы точка x* была оптимальным решением ЗВП, множество допустимых решений которой обладают свойством регулярности Слейтера, необходимо и достаточно, чтобы существовала такая пара (x*, λ*), которая являлась бы седловой точкой функции Лагранжа данной ЗВП. Замечание 10.1. Если ограничения задачи – линейные функции, то выполнение условия регулярности не требуется. Для того чтобы найти седловые точки необходимо и достаточно составить систему:
|