Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Означення 2. Якщо дисперсія залишків змінюється для кожного спостереження або групи спостережень, тобто , то це явище називається гетероскедастичністю*.




Читайте также:
  1. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
  2. Аксіоматичне означення множення цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони множення.
  3. Види статистичного спостереження.
  4. Візантійська культура – визначне явище світової культури
  5. Війна як антигуманне явище
  6. Геологічні спостереження за бурінням свердловин
  7. Границя функції. Означення границі функції за Гейне й за Коші.
  8. Групи інформації з точки зору засобів масового впливу
  9. Групи користувачів
  10. Групова швидкість і дисперсія хвиль

Якщо існує гетероскедастичність залишків, то це спричинюється до того, що оцінки параметрів моделі 1МНК будуть незміщеними, обгрунтованими, але неефективними. При цьому формулу для стандартної помилки оцінки, строго кажучи, застосувати не можна.

припустимо, що дисперсія залишків для моделі пропорційна до величини Х. Тоді доцільно виконати перетворення вихідної інформації, поділивши, наприклад, усі змінні на Х. Модель набере вигляду

.

У результаті для оцінювання параметрів можна застосувати 1МНК. Зауважимо, що параметри а0 і а1 помінялися ролями. Вільним членом моделі замість а0 став параметр а1.

Приклад 1. побудуємо економетричну модель, що характеризує залежність між заощадженнями та доходом населення, млрд ф.ст. (табл. 1).

Таблиця1

Рік
Заощадження 0,36 0,2 0,08 0,20 0,10 0,12 0,41 0,50 0,43
Дохід 8,8 9,4 10,0 10,6 11,0 11,9 12,7 13,5 14,3
Рік
Заощадження 0,59 0,90 0,95 0,82 1,04 1,53 1,94 1,75 1,99
Дохід 15,5 16,7 17,7 18,6 19,7 21,1 22,8 23,9 25,2

Скориставшись оператором оцінювання 1МНК

дістанемо = –1,081; = 0,1178.

Економетрична модель має вигляд

.

Коефіцієнт детермінації для цієї моделі = 0,918, а це означає, що варіація заощаджень Y на 91,8% визначається варіацією доходів населення.

На перший погляд, результат наводить на думку, що специфікація моделі не містить помилки.

Але логічно висунути гіпотезу, що відхилення заощаджень від норми можуть бути пропорційними до доходу, тобто для цієї моделі дуже ймовірне існування гетероскедастичності залишків.

Отже, вихідну інформацію доцільно перетворити, поділивши обидві змінні на величину доходу X (табл. 2):

Таблиця 2.

Рік
0,041 0,022 0,008 0,019 0,009 0,010 0,032 0,037 0,030
0,114 0,106 0,100 0,094 0,091 0,084 0,079 0,074 0,070
Рік
0,038 0,054 0,054 0,044 0,053 0,073 0,085 0,073 0,079
0,065 0,060 0,056 0,054 0,051 0,047 0,044 0,042 0,040

Нове рівняння зв’язку згідно з даними табл.2 має вигляд



.

У результаті перетворення вихідних даних практично повністю змінилася специфікація моделі. Оскільки , то цей зв’язок нелінійний. По-друге, характеризує відносний показник — рівень заощаджень, який припадає на одиницю доходу.

Виконавши цю процедуру, дістанемо таке: спостереження з меншими значеннями мають відносно більшу питому вагу при оцінюванні параметрів моделі, ніж у першому варіанті.

З наведеного прикладу бачимо, що явище гетероскедастичності не впливатиме на оцінки параметрів 1МНК, якщо певним чином перетворити вихідну інформацію. Це перетворення, значно ускладнюється, якщо будується економетрична модель з багатьма змінними. У такому разі потрібно з’ясувати зміст гіпотези, згідно з якою , де лишається невідомим параметром, а — відома симетрична додатно визначена матриця.


Дата добавления: 2014-12-03; просмотров: 29; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты