Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Параметричний тест Гольдфельда — Квандта




Коли сукупність спостережень невелика, то розглянутий метод не застосовний.

У такому разі Гольдфельд і Квандт запропонували розглянути випадок, коли , тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних моделі:

Y = XA + u.

Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.

Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Xj.

Крок 2. Відкинути c спостережень, які містяться в центрі вектора. Згід­но з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами c і n, де n — кількість елементів вектора :

Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень за умови, що перевищує кількість змінних m.

Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями і :

, де — залишки за моделлю (1);

, де — залишки за моделлю (2).

Крок 7. Обчислити критерій

який в разі виконання гіпотези про гомоскедастичність відповідатиме F-роз­поділу з , ступенями свободи. Це означає, що обчислене значення R* порівнюється з табличним значенням F-крите­рію для ступенів свободи і і вибраного рівня довіри. Якщо , то гетероскедастичність відсутня.

Приклад 3. У табл. 3 наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.

Таблиця3

Номер спостереження Витрати на харчування Загальні витрати u u2
2,30 2,16 0,14 0,020
2,20 2,16 0,04 0,002
2,08 2,20 -0,12 0,015
2,20 2,25 -0,05 0,002
2,10 2,25 -0,15 0,022
2,32 2,29 0,26 0,0007
2,45 2,34 0,11 0,012
2,50      
2,20      
2,50      
3,10      
2,50 2,37 0,13 0,016
2,82 2,52 0,29 0,085
3,04 2,68 0,36 0,128
2,70 2,99 -0,29 0,084
3,94 3,18 0,76 0,573
3,10 3,38 -0,28 0,076
3,99 3,57 0,42 0,178

Поделиться:

Дата добавления: 2014-12-03; просмотров: 148; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты