Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Параметричний тест Гольдфельда — Квандта




Читайте также:
  1. Амплітуда і фаза вимушених коливань (механічних і електромагнітних). Резонанс. Резонансні криві. Параметричний резонанс
  2. Параметричний підсилювач на НП-діодах.

Коли сукупність спостережень невелика, то розглянутий метод не застосовний.

У такому разі Гольдфельд і Квандт запропонували розглянути випадок, коли , тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних моделі:

Y = XA + u.

Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.

Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Xj.

Крок 2. Відкинути c спостережень, які містяться в центрі вектора. Згід­но з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами c і n, де n — кількість елементів вектора :

Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень за умови, що перевищує кількість змінних m.

Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями і :

, де — залишки за моделлю (1);

, де — залишки за моделлю (2).

Крок 7. Обчислити критерій

який в разі виконання гіпотези про гомоскедастичність відповідатиме F-роз­поділу з , ступенями свободи. Це означає, що обчислене значення R* порівнюється з табличним значенням F-крите­рію для ступенів свободи і і вибраного рівня довіри. Якщо , то гетероскедастичність відсутня.

Приклад 3. У табл. 3 наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.

Таблиця3


Дата добавления: 2014-12-03; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.029 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты