Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Малюнок № 1.5. Відношення перетину.




Читайте также:
  1. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
  2. Відношення між поняттями
  3. Відношення порядку на множині невід’ємних раціональних чисел.
  4. Відношення „контроль - вплив" як елемент багатовимірної моделі владного спілкування.
  5. Відношення „панування - підкорення" як елемент багатовимірної моделі владного спілкування.
  6. Відношення „управління -тиск" як елемент багатовимірної моделі владного спілкування.
  7. Відома теза екзистенціалізму «Екзистенція передує сутності». Охарактеризуйте співвідношення сутності та та існування людини в творах Ж.-П.Сатра і А. Камю
  8. Діаграма № 2.1. Відношення часткового збігу між поняттями.
  9. Діаграма № 5.1. Співвідношення між числовими множинами Q, Z, N.
  10. Ефективність – це якісна (відносна) узагальнююча характеристика результату діяльності, яка визначається відношенням ефекту до витрат на досягнення результату.

 

Виконаємо мислено таку побудову: розіб’ємо всі скінченні множини на класи, у кожному з яких містяться лише рівночисельні множини і тільки вони. Термін клас тут вживається як синонім терміна «множина». Спільною властивістю всіх скінченних множин певного класу є кількість елементів або чисельність множини кожного класу, тобто натуральне число, яке є потужністю кожної множини певного класу. Хоча природа елементів кожної множини певного класу може бути різноманітною, але всі множини цього класу об’єднує одна спільна властивість, яку для скінченних множин називають рівночисельністю. Виникає запитання: чи можна аналогічно поставитися до нескінченних множин? Іншими словами, чи існують серед нескінченних множин нерівнопотужні множини. Деякий час вважали, що всі нескінченні множини рівнопотужні між собою. У 70-80-х роках ХІХ століття видатний німецький математики Г.Кантор встановив, що серед нескінченних множин є безліч нерівнопотужних між собою множин і що всі нескінченні множини також можна розбити на класи рівнопотужних множин. У результаті дістали узагальнення поняття натурального числа на випадок нескінченних множин у вигляді поняття кардинального числа.

Означення: потужністю або кардинальним числом певної множини М називають той клас Кα рівнопотужних множин, в якому ця множина знаходиться.

Усім множинам одного класу приписується одна й та сама потужність. Позначивши потужність множини М через n(М), дістанемо n(А)=n(В)↔А~В. Якщо в класі Кα містяться скінченні рівнопотужні множини, то потужністю кожної з них є натуральне число, що вказує на кількість елементів цієї множини. Якщо ж клас Кα містить нескінченні рівнопотужні множини, то потужністю кожної з них є кардинальне число n(М).

Таким чином, серед нескінченних множин є безліч нерівнопотужних між собою множин. Для них можна ввести шкалу потужностей аналогічно тому, як це зроблено для скінченних множин. Найменша нескінченна потужність – це той клас, в якому міститься множина натуральних чисел, тобто потужність множини натуральних чисел. Крім того, використовуючи поняття потужності можна більш чітко розглянути питання про скінченні та нескінченні множини. Враховуючи сказане, приймемо наступні означення.



Означення: множина називається нескінченною, якщо із неї можна виділити деяку підмножину, рівнопотужну даній множині.

Таким чином, множина є скінченною, якщо із неї не можна виділити підмножину еквівалентну даній.

Означення: множина називається зчисленною, якщо вона рівнопотужна множині натуральних чисел.

Означення: потужність множини дійсних чисел називають континуумом.

Прикладом зчисленних множин є множина раціональних чисел, множина парних чисел тощо. Для того, щоб перевірити зчисленною чи незчисленною є та чи інша множина, слід спробувати встановити взаємно однозначну відповідність між елементами цієї множини та множиною натуральних чисел.

 


Дата добавления: 2014-12-03; просмотров: 21; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты