Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Статистическое моделирование и прогнозирование уровня процентных ставок.




Читайте также:
  1. III. Для обеспечения проверки исходного уровня Ваших знаний и умений решите задачу.
  2. III. Для обеспечения проверки исходного уровня Ваших знаний-умений необходимому, предлагаем решить 2 задачи.
  3. III. Для обеспечения проверки исходного уровня Ваших знаний-умений необходимому, предлагаем решить 2 задачи.
  4. III. Для обеспечения проверки исходного уровня Ваших знаний-умений необходимому, предлагаем решить задачу.
  5. III. Для обеспечения проверки исходного уровня знаний-умений Вам предлагается решить задачу.
  6. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  7. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  8. III. Для обеспечения проверки исходного уровня знаний-умений решите 2 задания.
  9. SFС — критерий порогового уровня
  10. А) для определения уровня принятия решения в случае, когда другие компании группы не кредитуются в Сбербанке

Для моделирования уровней процентных ставок в статистике используют различные типы уравнений, в том числе полиномы разных степеней, экспоненты, логические кривые и прочие виды функций.

При моделировании уровней процентных ставок основной задачей является подбор типа функций, которая максимально точно описывает тенденцию развития изучаемого показателя. Механизм определения функции аналогичен выбору типа уравнения при построении трендовых моделей. На практике для решения этой задачи используются следующие правила.

1) Если ряд динамики имеет тенденцию к монотонному возрастанию или убыванию, то целесообразно использовать следующие функции: линейную, параболическую, степенную, показательную, гиперболическую или комбинацию этих видов.

2) Если ряд имеет тенденцию к быстрому развитию показателя в начале периода и спаду к концу периода, то целесообразно применять логистические кривые.

3) Если ряд динамики характеризуется наличием экстремальных значений, то в качестве модели целесообразно выбрать один из вариантов кривой Гомперца.

В процессе моделирования уровней процентных ставок большое значение уделяется тщательному подбору типа аналитической функции. Это объясняется тем, что точное характеристика выявленной в прошлом закономерности развития показателя определяет достоверность прогноза его развития в перспективе.

Теоретической основой статистических методов, используемых в прогнозировании, является свойство инерционности показателей, которое основывается на предположении о том, что закономерность развития, существующая в прошлом, сохраниться и в прогнозируемом будущем. Основным статистическим методом прогнозирования является экстраполяция данных. Выделяют два типа экстраполяции: перспективную, проводимую в будущее, и ретроспективную, проводимую в прошлое.

Экстраполяцию следует оценивать как первую ступень построения окончательных прогнозов. При ее применении необходимо учитывать все известные факторы и гипотезы относительно изучаемого показателя. Кроме того, следует учесть, что чем короче период экстраполяции, тем более точный прогноз можно получить.

В общем виде экстраполяцию можно описать следующей функцией:

yi+T = ƒ (yi, Т, аn), (26)

где yi+Tпрогнозируемый уровень;



yi – текущий уровень прогнозируемого ряда;

Т – период экстраполяции;

аn – параметр уравнения тренда.

Пример 3´´. На основе данных примера 3 произведем экстраполяцию на I полугодие 2001 г. Уравнение тренда выглядит следующим образом: y^t =10,1-1,04t.

y8 = 10,1-1,04*8 = 1,78;

y9 = 10,1-1,04*9 = 0,78.

В результате экстраполяции данных мы получаем точечные значения прогноза. Совпадение фактических данных будущих периодов и данных, полученных при экстраполяции маловероятно по следующим причинам: использованная при прогнозировании функция не является единственной для описания развития явления; прогноз осуществляется с использованием ограниченной информационной базы, и случайные компоненты, присущие уровням исходных данных, повлияли на результат прогноза; непредвиденные события в политической и экономической жизни общества в будущем могут существенно изменить прогнозируемую тенденцию развития изучаемого показателя.

В связи с тем, что любой прогноз носит соотносительный и приближенный характер, при экстраполяции уровней процентных ставок целесообразно определять границы доверительных интервалов прогноза для каждого значения yi+T. Границы доверительного интервала покажут амплитуду колебаний фактических данных будущего периода от прогнозируемых. В общем виде границы доверительных интервалов можно определить по следующей формуле:



yt ±tαyt , (27)

где yt – прогнозируемое значение уровня;

tα – доверительная величина, определяемая на основе t-критерия Стъюдента;

σyt – среднеквадратическая ошибка тренда.

Кроме экстраполяции на основе выравнивания рядов по аналитической функции прогноз можно осуществлять методом экстраполяции на основе среднего абсолютного прироста и среднего темпа роста.

Использование первого метода основано на предположении, что общая тенденция развития уровней процентных ставок выражена линейной функцией, т.е. имеет место равномерное изменение показателя. Для определения прогнозируемого уровня ссудных процентов на любую дату t следует рассчитать средний абсолютный прирост и последовательно суммировать его последним уровнем ряда динамики столько раз, на сколько периодов времени экстраполируется ряд.

yi+T = yi + ∆¯*t, (28)

где i – последний уровень исследуемого периода, за который рассчитан ∆¯;

t – срок прогноза;

∆¯ - средний абсолютный прирост.

Второй метод применяется в том случае, если предполагается, что общая тенденция развития определяется показательной функцией. Прогнозирование осуществляется путем расчета среднего коэффициента роста, возведенного в степень, равную периоду экстраполяции.

yi+T = yi * Кt¯. (29)


Дата добавления: 2014-12-23; просмотров: 21; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты