КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Методические советы по выполнению контрольной работы 6 страницаТак как фактические значения больше теоретических (критических), то делаем вывод о существенности данных параметров ( и ), которые формируются под воздействием не случайных причин. Об это же свидетельствует показатель вероятности случайных значений параметров регрессии, так и То есть вероятность случайно получить такие значения t-критерия Стьюдента составляет 4,8 % и 0,0000, что не превышает допустимый уровень значимости 5 %. Чуть ниже на рис. 44 представлен расчет F-критерий Фишера, и он составляет 29,23. Согласно дисперсионному анализу вероятность получить случайно такое значение F-критерий Фишера составляет 0,0000, что не превышает допустимый уровень значимости 5%. Отсюда же берем нескорректированный коэффициент детерминации , который оценивает долю вариации результата в зависимости от факторов в общей вариации. Этот показатель показывает на достаточно высокую связь результата и от факторного признака. Скорректированный коэффициент детерминации оценивает тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов в модели и поэтому может сравниваться по разным моделям с разным числом факторов. Табличное значение F-критерий Фишера составило 3,59, расчетное – 220,59. Так как фактическое значение F превышает табличное, уравнение регрессии статистически значимо. Задача 19.Определение показателей связи при парной криволинейной зависимости. Пример решения задачи 19. Имеются данные по группе коров об их продуктивности возрасте (числе отелов) (табл. 31). Таблица 31- Данные для уравнения связи и индекса корреляции (корреляционное отношение)
Анализ исходных данных позволил установить, что зависимость криволинейная и может быть описана уравнением параболы 2-го порядка: (47) Требуется определить параметры уравнения связи и индекс корреляции. Решение:Составим систему уравнений для нахождения параметров , , : В систему уравнений подставим данные из табл. 266: Разделим члены каждого уравнения на коэффициент при ао Теперь из второго уравнения вычтем первое, а из третьего - второе: Освободимся от коэффициента при , для чего все члены уравнения разделим на коэффициент при : Из первого уравнения вычтем второе и получим 0,727=-1,206 , отсюда а2=-0,603. Подставим значения а2 в уравнение 1,103= +13,668∙(-0,603); отсюда = 9,345. В уравнение 93,077 = + 6,385 + 51,346a2 подставим значения найденных параметров и а2: 93,077 = а0 + 6,385∙9,345 + 51,346∙(- 0,603); 93,077 = + 59,668 - 30,962; = 93,007 - 59,668 + 30,962; = 64,371. Следовательно, уравнение параболы второго порядка будет иметь следующий вид: = 64,371 + 9,345 - 0,603 . Отрицательное значение а2 показывает, что с увеличением возраста коров до определенного предела (6-го отела) удой возрастает на 9,345 % с каждым новым отелом, а затем после определенного предела (с 6-го отела до 12-го отела) начинает падать в среднем на 0,603 % . Когда связь между нелинейная (в нашем случае - параболическая), для измерения тесноты связи используют корреляционное отношение, которое рассчитывается по формуле: Полученный результат свидетельствует о наличии тесной связи между возрастом коров и их продуктивностью, так как 95,03 % вариации в продуктивности связано с возрастом данной группы коров. Решим эту же задачу с помощью программы Statgraphics, используя в расчетах функцию Polynomial Regression (рис. 36). Рис. 36. Результаты расчетов Уравнение парной криволинейной зависимости примет вид: . Случайные ошибки параметров , , равны , , . Эти значения указывают на величину, сформировавшуюся под воздействием случайных факторов. На их основе рассчитываются значения t-критерия Стьюдента: , , . На основе Приложения 2 определим критические значения t-критерия Стьюдента для уровня значимости , т.е. с вероятностью 0,95 составит 2,2281, , т.е. с вероятностью 0,99 – 3,1693. Статистически значимыми здесь являются , , . Так как фактические значения больше теоретических (критических), то делаем вывод о существенности данных параметров ( , и ), которые формируются под воздействием не случайных причин. Об это же свидетельствует показатель вероятности случайных значений параметров регрессии, так , и То есть вероятность случайно получить такие значения t-критерия Стьюдента составляет 0,0000 %, что не превышает допустимый уровень значимости 5 %. Чуть ниже на рис. 45 представлен расчет F-критерий Фишера, и он составляет 71,06. Согласно дисперсионному анализу вероятность получить случайно такое значение F-критерий Фишера составляет 0,0000, что не превышает допустимый уровень значимости 5%. Отсюда же берем нескорректированный коэффициент детерминации , который оценивает долю вариации результата в зависимости от факторов в общей вариации. Этот показатель показывает на достаточно высокую связь результата и от факторного признака. Скорректированный коэффициент детерминации оценивает тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов в модели и поэтому может сравниваться по разным моделям с разным числом факторов. Задача 20. Имеются выборочные данные по 12 однородным предприятиям (табл. 32). Определите в программе Statgraphics уравнение регрессии, наиболее полно отражающее исходные данные. Оцените значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Таблица 32 – Исходные данные
Построить однофакторную регрессионную модель. Решение: воспользовавшись программой Statgraphics, получим следующие данные (табл. 33). Таблица 33 – Уравнения регрессии, коэффициент детерминации и достоверность
Как видим из таблицы 5, 6, 8 и 13 уравнения отпадают, так как не соответствуют по уровню t-критерия Стьюдента. Наиболее полно отражает действительность 17 модель, так как коэффициент детерминации равен 96,68 %. Однако более точный выбор дал бы коэффициент апроксимации.
|