Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Аналіз статистичних індексів




Читайте также:
  1. VII. Тематика курсових робіт з аналізу фінансів підприємств
  2. А. Вихідні дані для обчислення індексів
  3. АВС-аналіз по об'єму продажу товарів за період
  4. Аналіз адитивної та мультиплікативної моделі тимчасового ряду.
  5. Аналіз аналогів ПК, сучасних інформаційних технологій, засобів розробки програмного забезпечення
  6. Аналіз багатофакторної лінійної моделі регресії
  7. Аналіз беззбитковості
  8. Аналіз вихідних даних для оцінки прав на об’єкти інтелектуальної власності
  9. Аналіз господарської діяльністї
  10. АНАЛІЗ ДИСКРЕТНОІ САК

• Пациента необходимо с самого начала лечения приучать к легкозапоминающейся схеме чередования областей для инъекций.

• Согласно одной из схем с доказанной эффективностью область для инъекций раз­деляется на четыре квадранта (или половины, когда речь идет о бедрах или ягоди­цах), при этом каждую неделю используется только один квадрант, а затем следую­щий, с чередованием по часовой стрелке, как это показано на рис. 6 и 7

 

 

Рис. 6. Схема чередования инъекций с помощью квадрантов на животе

 

 

Рис. 7. Схема чередования инъекций с помощью половин на бедрах и ягодицах

• Инъекции в пределах любого квадранта или половины следует выполнять на рас­стоянии как минимум 1 см одна от другой для того, чтобы избежать повторного травмирования тканей.

• При каждом визите медицинские работники должны удостовериться, что схема че­редования соблюдается правильно, и дать необходимые советы.

Рекомендации:

• Как медицинские работники, так и пациенты должны быть осведомлены о требованиях по утилизации и выбрасыванию загрязненных биологических отходов. Необходимо ознакомиться с юридическими и административными последствиями нарушения этих требований.

• С самого начала инъекционной терапии необходимо обучать пациентов правильной утилизации отработанного инструментария и укреплять этот навык на протяжении всего лечения.

• Возможные неблагоприятные последствия (например, колотые травмы у детей) следует объяснить семье пациента, а также обслуживающему персоналу (например, сборщикам мусора и уборщикам).

• Там, где это возможно, следует использовать прибор для клиппирования (обламывания) игл. Пациент может носить его в своей аптечке и использовать много раз.

• Ни при каких условиях острые предметы нельзя выбрасывать в обычные (публичные) урны или мусоросборники.

Таблица 3: «Десятка» основных новых рекомендаций по технике инъекций

Длина игл У детей и подростков следует применять иглы длиной 5 или 6 мм. Нет медицинских оснований для применения игл длиннее 6 мм. Иглы длиной 5 и 6 мм могут быть использованы у любых взрослых пациентов, включая пациентов, страдающих ожирением. Нет медицинских оснований для применения у взрослых игл длиннее 8 мм.
Липогипертрофия Пациенты должны регулярно осматривать свои области для инъекций инсулина, при этом их необходимо обучить, как выявлять липогипертрофию. Повторно выполнять инъекции в область липогипертрофии нельзя. В настоящее время наилучшими методами профилактики и лечения липогипертрофии считаются применение очищенных человеческих инсулинов или аналогов, регулярное чередование областей для инъекций, использование для инъекций более обширных зон и отказ от повторного использования игл.
Участки для инъекций Аналоги инсулина и агонисты рецепторов ГПП-1 можно вводить в любые обычно используемые для инъекций области, так как между ними, по-видимому, нет никаких различий в отношении скорости всасывания препарата. Растворимый человеческий инсулин короткого действия следует вводить в область живота, это повысит скорость его всасывания; НПХ-инсулин следует вводить в область бедер или ягодиц с целью замедления его всасывания и снижения вероятности развития гипогликемии. Необходимо избегать случайного внутримышечного введения длительно действующих аналогов инсулина, так как в таком случае существует высокий риск выраженной гипогликемии.
Начало инъекционной терапии у детей Для маленьких детей лучшей методикой будет их отвлечение (до тех пор, пока они не поймут обман) или игра (например, инъекции в мягкую игрушку), а дети постарше лучше реагируют на когнитивно - поведенческую терапию.
Инъекции взрослым пациентам с диабетом 2-го типа Медицинские работники должны каждого пациента с впервые выявленным сахарным диабетом 2-го типа морально готовить к возможному появлению в будущем необходимости использовать инсулин, объяснив ему природу, прогрессирующий характер заболевания, отметив, что варианты лечения включают, в том числе инсулинотерапию, и, пояснив, что применение инсулина не является признаком неблагоприятного исхода. Настрой на инсулинотерапию должен быть позитивным.

 





Перевод на русский язык под редакцией дмн, А.Ю. Майорова, ФГУ Эндокринологический Научный Центр, Москва ,2010г. (Извлечение)

 

 

Алгоритм расчета инсулина для набора в шприц.

 

1. Определить по флакону с инсулином, какое количество единиц действия (А) содержит 1мл. данного инсулина (40;100),

2. Определить количество делений шприца (С), нужно число единиц действия данного инсулина (А) разделить на количество делений шприца (Б) в 1 мл.

 

С=А: Б

Например: 40 единиц инсулина в 1мл.: 10 делений = единицы, т. е в одном делении данного шприца содержится 4 единицы назначенного инсулина.

4. Зная назначенную больному дозу инсулина (Д) и предварительно рассчитанную цену делений шприца (С), легко набрать необходимое количество делений.

 

Е=Д: С

Например: Д=32 единицы; С-4 единицы (рассчитали выше), следовательно, необходимая доза составит 32:4=8делений данного шприца.



Если набор инсулина производится отдельной иглой, то набрать шприц инсулина следует на одно деление больше, чтобы выпустить этот инсулин(1деление) через иглу, преднозначенную непосредственно для инъекции.

Если же набор инсулина производится той же иглой, которой будет производиться инъекция, то следует набрать точно рассчитанную дозу, без дополнительного деления, так как «мертвого пространства» в игле не будет

 

 

1.

2.

3.

3.1.Ознакомиться с лабораторным макетом № 1 для исследования харак­теристик усилителей на биполярных транзисторах.

3.2.Исследовать схемы эмиттерных повторителей (рис. 1.4, 1.5):

а) измерить входное и выходное сопротивления эмиттерного повторителя (рис. 1.4);

б) рассчитать теоретически значения RBx и Rbbix эмиттерного повторителя (рис. 1.4) и сравнить с экспериментальным значением;

в) определить максимальное значение напряжения неискаженного сигнала для схем, изображенных на рис.1.4 и 1.5.

3.3.Исследовать схему усилителя с общим эмиттером с ООС по перемен­ному току (рис. 1.6).

3.4.Исследовать схему усилителя с общим эмиттером с ООС1. по постоян­ному току (рис. 1.7).

3.5.Исследовать схему дифференциального усилителя (рис. 1.8).

3.6.Исследовать схему двухтактного усилителя на транзисторах (рис. 1.9).

 

Рис. 1.4. Эмиттерный повторитель- У ПТ без смещения (схема 1 макета)

 

 

Рис. 1.5. Эмиттерный повторитель - усилитель переменного тока со смещением (схема 2 макета)

 

 

Рис. 1 .6. Усилитель с общим эмиттером с ООС по переменному току (схема 3 макета)

Рис. 1.7. Усилитель с общим эмиттером с ООС по постоянному току (схема 4 макета)

 

 

Рис. 1.8. Дифференциальный усилитель (схема 5 макета)

 

 

4.Экспериментальные исследования

4.1. Ознакомиться с лабораторным макетом и основными параметрами гран in- сторов схем макета.

4.2. Исследовать схему эмиттерного повторителя при отсутствии напряжения смещения.

4.2.1. Использовать для проведения исследований схему 1 макета (рис. 1.4). Переключатель SA1 перевести в замкнутое состояние, SA2 - в положение .!. , подать на вход сигнал синусоидальной формы с генератора сигналов частотой 1 кГц. Изменяя амплитуду и частоту входного сигнала в некоторых пределах, пронаблюдать форму выходного сигнала, сравнивая его с входным.

4.2.2. Повторить п. 4.2.1, переключив SA2 в положение - 15 В.

4.3. Измерить входное и выходное сопротивления эмиттерного повторителя.

4.3.1. Установить в схеме 1 макета (рис. 1.4) переключатель SA2 в положение -15 В. Подать на вход XS1 сигнал с генератора ГЗ-111 амплитудой менее 1 В и частотой около 1 кГц. Контролировать входной и выходной сигналы осциллографом С1-93.

Рис. 1.9. Двухтактный усилитель на транзисторах (схема 6 макета)

 

 

4.3.2. Вычислить (рассчитать) входное сопротивление RBX эмиттерного повто­рителя, используя соотношение

 

 

4.3.3. Измерить амплитуду UВЫХ эмиттерного повторителя при замкнутом и разомкнутом SA1. Приняв значения резисторов R1 и R2 за внутренние значения выходного сопротивления генератора сигнала, рассчитать RBX . Сравнить экспе­риментальные данные с расчетными.

4.3.4. Вычислить (рассчитать) выходное сопротивление RВЫХ эмиттерного по­вторителя, используя соотношение

 

где Rbых и - выходное сопротивление источника сигнала.

4.3.5. Измерить UВЫХ при включенной и отключенной нагрузке (резистор R4) и при замкнутом переключателе SA1. Рассчитать RВЫХ по результатам измерений. Сравнить экспериментальные данные с теоретическими.

4.4. Подать на вход XS5 схемы 2 (рис. 1.5) сигнал с генератора и пронаблюдать l/вых при замкнутом и разомкнутом переключателе SA3. Объяснить причину из­менения формы Uвых .

4.5. Исследовать усилитель с общим эмиттером (рис. 1.6).

Подать для проведения исследований на вход XS8 сигнал с генератора и изме­нять его амплитуду и частоту в широких пределах.

Пронаблюдать форму, амплитуду и фазу выходного сигнала при различных ком­бинациях переключателей SA4 и SA5 и величины резистора R9. Объяснить ре­зультаты наблюдений и влияние элементов С7 и R9 на форму выходного сигна­ла.

4.6. Исследовать усилитель с общим эмиттером со смещением с помощью обратной связи по постоянному току (рис. 1.7):

4.6.1. Подать на вход XS9 сигнал с генератора. Переключатель SA6 пере­вести в положение 2. С помощью потенциометра R15 установить рабочую точку (точку покоя) каскада так, чтобы на выходе постоянное напряжение было равно половине напряжения питания.

4.6.2. Включить переключатель «Нагрев» в положение 1 и наблюдать за смещением постоянного уровня на выходе схемы. Выключить «Нагрев».

4.6.3. Перевести переключатель SA6 в положение 1 (замкнуть обратную связь) и повторить п. 4.6.2.

4.6.4. Сравнить результаты наблюдений пп. 4.6.2 и 4.6.3 и сделать выводы.

4.7. Исследовать дифференциальный усилитель на транзисторах (рис. 1.8). Подключить канал 1 осциллографа к выходу XS14 и канал 2 - к выходу XS15 , предварительно откалибровав осциллограф. Установить чувствительность вхо­дов 5 В/дел. Измерить величину постоянного напряжения на каждом выходе от­носительно общего провода.

4.7.1. Подать на вход XS13 сигнал с генератора амплитудой менее 1 В. Пронаблюдать выходное напряжение с выходов XS14 и XS15.

4.7.2. Подать тот же сигнал с генератора одновременно на оба входа диф­ференциального каскада. Пронаблюдать выходные сигналы при различных ам­плитудах входного сигнала. По результатам экспериментальных данных рассчи­тать коэффициент ООС.

4.8. Исследовать двухтактный усилитель на транзисторах (рис. 1.9). По­дать сигнал с генератора на вход XS17. Переключатель SA7 перевести в положе­ние 2. Пронаблюдать UВых схемы и объяснить причины искажения выходного сигнала.

Переключатель SA7 перевести в положение 1. Сигнал подать на вход XS16. Пронаблюдать UBых схемы и объяснить причину отсутствия характерных иска­жений сигнала.

 

5.Оформление отчета и анализ полученных результатов

5.1. Согласно п. 4.1 дается краткое описание схем макета и паспортных данных транзисторов схем макета. Вычерчиваются схемы макета согласно тре­бованиям ГОСТа.

5.2. Приводятся диаграммы входных и выходных сигналов с обязательным указанием их числовых значений.

5.3 Производятся расчеты, которые требуются в разделе «Эксперимен­тальные исследования», сравниваются результаты теоретических расчетов и экс­периментов.

5.4. Дается объяснение полученным результатам и расхождениям резуль­татов с расчетными.

6.Контрольные вопросы

6.1. Поясните, почему для каскадов с общим эмиттером наблюдается, а для каскадов с общим коллектором отсутствует инвертирование выходного напря­жения сигнала?

6.2. Изобразите цепи питания коллектора, базы и эмиттера биполярного транзистора.

6.3. Каково назначение резисторов в каскаде усилителя с общим эмитте­ром, имеющим цепь смещения рабочей точки током базы?

6.4. Изобразите принципиальную схему и объясните принцип работы эмиттерной стабилизации режима по постоянному току.

6.5. То же самое для коллекторной стабилизации.

6.6. Изобразите семейство выходных статических характеристик для бипо­лярного транзистора и покажите способы построения нагрузочных линий для постоянного и переменного токов.

 

 

Лабораторная работа № 2

ОСНОВНЫЕ СХЕМЫ ВКЛЮЧЕНИЯ ИНТЕГРАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ (ОУ) НА ПОСТОЯННОМ ТОКЕ И ЕГО ПАРАМЕТРЫ, ВНОСЯЩИЕ ОШИБКУ В ВЫХОДНОЕ НАПРЯЖЕНИЕ

 

1. Цель работы

Исследование основных схем включения операционного усилителя (ОУ) на постоянном токе и токах низкой частоты и определение составляющих ошибки в выходном напряжении, обусловленных входными токами смещения и сдвига, а также входным напряжением сдвига.

Рекомендуемая литература [1 -6, 12, 13].

 

2.Общие сведения

ОУ имеет очень большой коэффициент усиления (К). Поэтому даже ма­лое дифференциальное входное напряжение легко вызывает смещение выходно­го напряжения к его предельному значению. Кроме того, коэффициент усиления ОУ имеет очень большой производственный разброс ( до 100%) и зависит от тем­пературы, напряжения питания и т.д. Для повышения стабильности коэффици­ента усиления К и обеспечения требуемой его величины применяются ОУ с внешними отрицательными обратными связями. В зависимости от способа по­дачи входного сигнала на такие схемы их подразделяют на инвертирующие, не­инвертирующие и дифференциальные.

Название «инвертирующий усилитель» говорит о том, что входной сиг­нал подается на инвертирующий вход ОУ, а неинвертирующий вход его зазем­лен. Схема инвертирующего усилителя приведена на рис. 2.1,а. Легко видеть, что эта схема с параллельной отрицательной обратной связью (ООС) по напря­жению.

Обычно глубина ОС берется большой. В этом случае можно приближен­но считать, что UВХ.Д<< UВХ и UВХ.д <<Uвых, т.е. UВХ.Д пренебрежимо мало. По этой причине, а также вследствие высокого RВХ.Д входной ток ОУ тоже пренеб­режимо мал. Следовательно, величины токов I, протекающих через R1 и через резистор обратной связи Roc (см. рис. 2.1,а), одинаковы и могут быть выражены как через входное, так и через выходное напряжения

 

откуда коэффициент усиления с ОС

 

Рис. 2.1. Схемы инвертирующего (а) и неинвертирующего (б) усилителей с ООС

 

Такой упрощенный подход к определению Кос оказался возможным бла­годаря глубокой обратной связи и большому К.

В неинвертирующем усилителе входной сигнал подается на неинверти­рующий вход ОУ (рис. 2.1,б), а напряжение ОС - по-прежнему на инвертирую­щий (через делитель Roc, R1 )• По тем же причинам, что и в инвертирующем усилителе, ивх.д и 1ВХ пренебрежимо малы. Поэтому через R1 и Roc протекает ток I одной и той же величины, причем

Отсюда коэффициент усиления неинвертирующего усилителя с ОС

Схема дифференциального усилителя приведена на рис. 2.2.

Roc

 

 

Такой усилитель, как и дифференциальный каскад, обладает способно­стью вычитать входные напряжения UBХ.1 и UBХ.2, поданные на его входы относи­тельно земли. Иначе говоря, он усиливает напряжение, действующее между его входами Uвх.д = UBХ.1 - UBХ.2 и не реагирует на синфазную помеху.

Для нахождения UВых можно воспользоваться принципом суперпозиции. Если UBХ.1 = 0, т.е. левый конец резистора R1 заземлен, то получается схема, по­добная показанной на рис. 2.1,б, т.е. неинвертирующий усилитель. Но напряже­ние Ubx.2 на его вход подается от источника не непосредственно, а через делите­ли R2, R3. Поэтому

Если теперь UBХ.2 = 0, то Ubx.1будет передаваться так же, как и в инвертирующем усилителе:

Включение между неинвертирующим входом и землей сопротивления величи­ной R2 || R3 практически не влияет на коэффициент передачи, так как входной ток ОУ ничтожно мал и почти не создает на этих сопротивлениях падения на­пряжения. Полное входное напряжение от двух входов по принципу суперпози­ции (с неинвертирующего входа передача сопровождается изменением знака)

т.е. равно разности входных напряжений, создаваемых напряжениями, дейст­вующими на неинвертирующем и инвертирующем входах.

Чтобы Uвых было пропорционально разности входных напряжений нуж­но, чтобы коэффициент передачи усилителя для каждого из UBХ.1 и UBХ.2 был один и тот же:

или

откуда . При этом условии

т.е. пропорционально разности входных напряжений и не зависит от их абсо­лютной величины. Иначе говоря, такой усилитель не чувствителен к синфазному входному напряжению. Однако в реальном ОУ синфазный сигнал, к сожалению, все же проходит на выход, хотя и очень слабо.

 

3.Программа работы

3.1. Ознакомиться с лабораторным макетом 2 для исследования характери­стик ОУ на постоянном токе.

3.2. Исследовать схему включения ОУ в инвертирующем и неинверти­рующем режимах и влияние напряжения смещения на выходное напряжение (рис. 2.4):

а) рассчитать и проверить экспериментально коэффициент усиления Кос инвертирующего и неинвертирующего усилителя;

б) устранить влияние напряжения сдвига ОУ на UВых-

3.3 Исследовать схему инвертирующего ОУ с внешней цепью смещения иВых (рис. 2.5):

а) устранить влияние Ucm ОУ на UВых с помощью внешней цепи сме­щения;

б) рассчитать и измерить идеальный и фактический Кос усилителя.

3.4. Исследовать схему дифференциального усилителя (рис. 2.6):

а) построить передаточную характеристику схемы при подаче UBX од­новременно на оба входа;

б) определить величину КООС в диапазоне UBX = -2,0...2,5В;

в) рассчитать и измерить Кос усилителя по инвертирующему и неин­вертирующему входам.

3.5. Измерить и рассчитать токи смещения и сдвига ОУ (рис. 2.7).

 

4.Экспериментальные исследования

4.1. Ознакомиться с лабораторным стендом. Перед началом работы необходимо изучить паспортные данные ОУ К140УД7 и записать его основные параметры. Следует также ознакомиться с измерительными приборами, необходимыми для выполнения предусмотренных программой измерений, включить их и откалибровать (осциллограф С1-93, вольтметр В7-16А, генератор сигналов ГЗ-112).

4.2. Исследовать схему включения ОУ в инвертирующем и неинвертирующем режимах. Напряжение смещения и его влияние на Uвых ОУ.

4.2.1. Используя схему усилителя на ОУ (рис. 2.4), собрать схему, как по­казано на рис. 2.3.

Установить переключатель SA2 в положение 1. Подключить к выходу DA1 вольтметр В7-16А и параллельно к нему осциллограф С1-93. Измерить вольтметром Uвых и записать его величину.

Вычислить коэффициент усиления усилителя, используя соотношение

Вычислить напряжение смещения ОУ в схеме до его компенсации


 

R2 100к

 

 

Установить переключатель SA2 в замкнутое состояние. Вращая ручку по­тенциометра R5 и одновременно наблюдая изменения Uвых усилителя, добиться ситуации, когда Ubux=0. Проследить за изменением UВых при вращении ручки потенциометра в различных направлениях.

4.2.2. Измерить КOC неинвертирующего усилителя:

а) закоротить инвертирующий вход XS1 схемы 1 макета (рис. 2.4) на об­щий провод:

6') отбалансировать усилитель (см. п. 4.1);

в) рассчитать Кос неинвертирующего усилителя, если переключатель SA1 будет в положении 1,2,3 и предсказать коэффициент усиления усилителя, когда SA4- в положении 4;

г) подать на вход XS2 схемы 1 макета ( рис. 2.4) постоянное напряжение 0,5 В и измерить UВых. Для всех положений выключателя SA2. Обратить внима­ние на полярность UВых. Провести подобные операции для UBX= —0.5 В.

Рассчитать Кос по результатам экспериментальных измерений и сравнить его величину с рассчитанной;

д) подать на вход XS2 сигнал с генератора сигналов синусоидальной фор­мы. Параллельно генератору подключить вход осциллографа (канал 1). Устано­вить частоту сигнала 1 кГц напряжением (эффективное значение) 0,5 В. Пронаб­людать амплитуду и фазу сигнала одновременно на входе и выходе схемы для всех положений переключателя SA1, подключив к выходу усилителя осцилло­граф (канал 2). Провести подобные операции для UBX=1 В. Объяснить искажение формы UВых при определенных Кос.

4.2.3. Исследовать повторитель напряжения на ОУ. Убрать закорачиваю­щую перемычку со входа XS1 схемы 1 макета (рис.2.4).Установить переключа­тель SA1 в положение 1.

Подать на вход XS2 схемы сигнал постоянного, а затем переменного на­пряжения с амплитудой менее 10 В. Измерить и записать значения входных на­пряжений. Как соотносится для двух видов сигналов (переменного и постоянно­го) отношение UВЫХ/UBХ?

Установить переключатель SA1 в положение 2. Повторить п. 3.2. Изме­нится ли Кос схемы? Почему?

4.2.4. Исследовать инвертирующий усилитель на ОУ. Закоротить инвер­

тирующий вход XS2 схемы 1 макета (рис. 2.4) на общий провод. Подать входной сигнал на вход XS1. .

Выполнить все операции аналогично операциям для неинвертирующего усилителя. Провести сравнение результатов исследования этих двух видов вклю­чения ОУ.

4.2.5. Исследовать усилитель с дифференциальным входом. Использовать для проведения исследований схему, изображенную на рис. 2.5.

 

 

Рис. 2.4. Усилитель на ОУ (схема 1 макета)

 

 

Рис. 2.5. Усилитель с дифференциальным входом (схема 2 макета)

 

Рис. 2.6. Схема измерения идеального и фактического Кос (схема 3 макета)

 

 

Рис. 2.7. Схема измерения тока смещения и сдвига ОУ (схема 4 макета)

 

Подать на вход XS5 постоянное напряжение с генератора сигналов посто­янного напряжения, а на вход XS6 - переменное напряжение с генератора сигна­лов низкочастотного ГЗ-111.

Пронаблюдать Uвых усилителя при различных входных напряжениях. Проверить соответствие значения Uвых по формуле

Фазу и амплитуду Uвых сравнивать в процессе работы с UBX, используя два кана­ла осциллографа С1-93. Измерение провести при различных положениях пере­ключателя SA5.

Повторить п. 4.2, подавая постоянное напряжение на вход XS6, а пере­менное - на вход XS5. Сравнить результаты п. 4.2.5.

Соединить входы XS5 и XS6 между собой и измерить при Uвx=0,5 В и Uвx=-0.5 В. Объяснить результаты, полученные при измерении. Рассчитать КООС.

Подать на вход сигнал с генератора сигналов синусоидальной формы час­тоты 40 Гц. Изменяя амплитуду UBx, проследить на двухлучевом осциллографе за изменением Uвых и UBX. Объяснить результаты наблюдения.

4.2.6. Рассчитать и измерить идеальный и фактический Кос усилителя. Исследовать внешнюю цепь компенсации напряжения сдвига ОУ.

Использовать для проведения исследований схему 3 макета (рис.2.6). Закоротить вход схемы XS8 на общий провод. Вращая ручку потенцио­метра R17, добиться Uвых=O. Проследить за изменением Uвых усилителя при вращении ручки потенциометра в различном направлении.

Измерить фактический Кос при переменном входном напряжении, ам­плитуда которого равна 10мВ, а частота 40 Гц.

Рассчитать Кос для схемы, используя выражение

Где , .

Сравнить фактический Кос с идеальным. Как расчет согласуется с изме­нениями?

4.2.7.Измерить токи смещения и сдвига ОУ.

Использовать для проведения исследований схему 4 макета (рис.2.7).

Установить переключатель SA6 в положение 1 (SA6.1 и SA6.2 замкнуты). Вращая потенциометр R20, свести к нулю Uвых-

Перевести переключатель SA6 в положение 2 (SA6.1 разомкнут, SA6.2 замкнут). Измерить Uвых усилителя DA4 и рассчитать Iсм1 (ток смещения ОУ по инверти­рующему входу)

 

­Перевести переключатель SA6 в положение 3 (SA6.1 замкнут, SA6.2 ра­зомкнут). Измерить Uвых ирассчитать Iсм2 (ток смешения ОУпо инвертирую­щему входу);

 

Рассчитать Iсдв• Перевести SA6 в положение 4 (SA6.1 и SA6.2 разомкнуты). Из­мерить Uвых

R=R18=R19.

5.Оформление отчета и анализ полученных результатов

 

5.1.Согласно п. 4.1 дается краткое описание паспортных данных ОУ К140УД7 и схем его включения в лабораторном макете. Приводятся схемы макета, выпол­ненные согласно требованиям ГОСТа.

5.2.Выполняются расчеты, необходимые в разделе «Экспериментальные ис­следования», сравниваются результаты теоретических расчетов и эксперимен­тов.

5.3.Приводятся диаграммы входных и выходных сигналов с обязательным указанием их численных значений, как показано на рис. 2.8.

5.4.Анализируются полученные зависимости и даются критические оценка полученных результатов.

 

А)

 

Рис 2.8. Диаграммы входного (а) и выходного (б) сигналов

 

6.Контрольные вопросы

6.1.Назовите характеристики идеального ОУ.

6.2.Дайте определение напряжения смещения ОУ,

6.3.Назовите основную причину возникновения Uсм иIсдна входе ОУ на биполярных транзисторах.

6.4.Объясните, почему повторитель напряжения является хорошим бу­ферным каскадом?

6.5.Укажите, что произойдет с Кос, Rbx.oc при увеличении петлевого ко­эффициента усиления.

6.6.Перечислите причины появления сдвига Uвых под действием Iсм .

6.7.Почему Кос идеального ОУ с замкнутой ОС полностью определяется цепью ОС?

6.8.Изложите кратко принцип действия схемы для измерения Icм, исполь­зуемой в лабораторной работе.

6.9.Дайте определение ООС.

6.10.Укажите, почему усиление синфазного сигнала нежелательно.

6.11.Назовите два основных фактора, приводящих к появлению темпера­турного дрейфа ОУ.

6.12.Каково главное преимущество ОУ со стабилизацией прерыванием?

 

 

Лабораторная работа №3

 

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ИНТЕГРАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ.

ИНТЕГРАТОР И ДИФФЕРЕНЦИАТОР, СУММИРУЮЩИЕ СХЕМЫ

 

1.Цель работы

 

Исследование динамических характеристик ОУ, способов частотной кор­рекции его амплитудно-частотной характеристики, схем интегратора и диффе­ренциатора на основе ОУ, суммирующих схем.

Рекомендуемая литература [1-6, 12. 13].

 

2.Общие сведения

 

Если ОУ используется для усиления сигналов переменного тока, то важное значение приобретают его параметры, зависящие от частоты этого сигнала. Они называются динамическими параметрами.

Следует различать, какой величины переменные напряжения на выходе ОУ: малой (с амплитудой ниже 1 В) или большой (с амплитудой свыше 1 В). Ес­ли на выходе только сигналы переменного напряжения малой величины, то важ­ными параметрами ОУ, ограничивающими его возможности, являются шумы и амплитудно-частотная характеристика (АЧХ). Если на выходе ожидаются сигна­лы переменного напряжения большой величины, то параметр ОУ, называемый

 

 

максимальной скоростью нарастания выходного напряжения, определяет, будет ли О У вносить искажения в этот сигнал или нет.

В идеальном случае ОУ должен иметь полосу пропускания, равную бесконечности. Это означает, что если, например, для сигналов постоянного тока усиление ОУ равно 80 дБ. то оно должно иметь такую же величину и для сигна­лов в диапазоне от звуковых частот до радиочастот. Однако, как показано на рис.

3.1.а, коэффициент усиления реальных ОУ на высоких частотах уменьшается (падает).

Уменьшение усиления вызвано влиянием ёмкостей в схеме самого ОУ. Эти распределенные ёмкости можно объединить в одну и представить ОУ в виде эквивалентной схемы (рис. 3.1,6). Реактивные сопротивления, которыми обла­дают ёмкости, на высоких частотах уменьшаются, приводя к шунтированию це­пей прохождения сигнала и тем самым к уменьшению сигнала на выходе. Наря­ду с уменьшением коэффициента усиления на высоких частотах увеличивается сдвиг по фазе выходного сигнала относительно входного (рис. 3.2). На низких частотах разность фаз между сигналами на инвертирующем входе и выходе ОУ близка к 180°. На более высоких частотах выходной сигнал запаздывает относи­тельно входного более чем на 180°; и это дополнительное запаздывание называ­ется фазовым сдвигом. Дополнительный сдвиг фазы добавляется к первоначаль­ному запаздыванию, вызывая общее запаздывание более 180°, и может достигать сдвига в 360°

 

 

Рис. 3.1. Коэффициент усиления реального ОУ (а) и эквивалентная схема распределённых ёмкостей (б)

 

 

 

Рис. 3.2. Фазовый сдвиг входного сигнала

 

 

Обычно зависимость коэффициента усиления по напряжению и фазовый сдвиг от частоты выражаются в следующем виде:

 

, .

 

где К - коэффициент усиления ОУ без ОС на постоянном токе; f- рабочая (те­кущая) частота входного сигнала; fCP- частота среза или частота, на которой K(f) на 3 дБ ниже К (или равен 0,707 К); -фазовый сдвиг выходного сигнала.

Знак «минус» перед правой частью выражения для означает, что выход­ной сигнал отстает по фазе от входного. При определённых условиях значитель­ный фазовый сдвиг сигнала на выходе ОУ может привести к самовозбуждению усилителя. Для предотвращения этого приходится вводить в усилитель специ­альные цепи частотной коррекции.

Известно, что в области верхних частот даже один транзисторный каскад создаёт частотно-зависимый фазовый сдвиг не менее 180°. При охвате ООС фа­зовый сдвиг петлевого усиления на средних частотах составляет 180". В итоге суммарный сдвиг петлевого усиления на некоторой частоте составляет 360°, что соответствует выполнению баланса фаз - одного из необходимых условий само­возбуждения. Однако на этой частоте коэффициент усиления каскада, а значит, и петлевое усиление очень малы, т.е. заведомо меньше единицы. Следовательно, не выполняется баланс амплитуд, и самовозбуждения не происходит.

ОУ многокаскадный (обычно 3 каскада), и поэтому частотно-зависимый фазовый сдвиг, равный 180° (условие баланса фаз усилителя с ООС), наблюдает­ся на той частоте, где усиление падает ещё не сильно. Значит, на этой частоте возможно петлевое усиление K > 1, и тогда наступает самовозбуждение.

Для предотвращения самовозбуждения последовательно с ОУ (блоком К на рис. 3.3,а) необходимо включить корректирующую RС-цепь, ослабляющую верхние частоты (рис.3.3,б). Верхняя граничная частота цепи вц = 1/RC берётся во много раз меньше, чем верхняя частота ОУ В.Оу

 

 

Рис 3.3. Схема ОУ (а) с корректирующей RC-цепью (б)

 

Известно, что коэффициент передачи такой цепи на частотах > вц уменьшается пропорционально частоте, или, как говорят, со скоростью 6 дБ/окт. или 20 дБ/дек (октава - изменение частоты в 2 раза, декада - в 10 раз). Поэтому на частотах порядка В.Оу коэффициент передачи RС-цепи очень мал и за счёт этого получается К < 1, т.е. не выполняется баланс амплитуд. На более низких частотах (порядка в.ц)не выполняется баланс фаз, ибо фазовый сдвиг такой RC- цепи, как известно, не превышает 90° (по знаку отрицателен), а фазовый сдвиг ОУ в этой области ещё очень мал, так как для него это область средних частот. Следовательно, и в этой области частот самовозбуждение невозможно. Посколь­ку фазовый сдвиг, вносимый RС-цепью, отрицателен, такая коррекция называет­ся запаздывающей.

На практике вместо RС-цепи включают ёмкость С, шунтируя ею на землю какую-либо точку ОУ, через которую проходит сигнал. Тогда в роли R оказыва­ется эквивалентное сопротивление между этой сигнальной точкой и землёй. Чтобы требуемая ёмкость конденсатора С была меньше, её подключают к самой высокоомной сигнальной точке внутри ОУ.

Типично также включение корректирующего конденсатора С между кол­лектором и базой одного из каскадов в ОУ. В соответствии с эффектом Миллера подключение ёмкости Сбк в схеме с ОУ увеличивает входную ёмкость на (1 + К)СБк. Эта входная ёмкость и играет роль корректирующей. Такой приём позволяет понизить требуемую ёмкость конденсатора дополнительно в (1 + К) раз. В результате этого она становится настолько малой (десятки пФ), что часто встраивается в ОУ в процессе его изготовления.

Существуют и другие более сложные цепи коррекции частотной характе­ристики ОУ.

3. Программа работы

3.1. Ознакомиться с лабораторным макетом 3 для исследования динамиче­ских характеристик ОУ, интегратора и суммирующих схем.

3.2. Исследовать схему включения ОУ в инвертирующем режиме с внеш­ней частотной коррекцией и схему интегратора (рис. 3.4):

а)пронаблюдать Uвых ОУ в режиме инвертирующего усилителя при Кос = -1 и Кос = -6 с разомкнутой и замкнутой цепью коррекции;

б) устранить самовозбуждение схемы усилителя;

в)проверить экспериментально постоянство Кос на всей полосе про­пускания;

г) пронаблюдать на экране осциллографа эффекты искажения Uвых ОУ, связанные с ограничением скорости нарастания выходного напряжения;

д) рассчитать и экспериментально проверить полосу частот интеграто­ра.

3.3. Исследовать схему дифференциатора (рис.3.5):

а) проверить экспериментально полосу частот дифференциатора

б) пронаблюдать на экране осциллографа UВЫХ дифференциатора при подаче на вход импульсов напряжения прямоугольной формы

3.4. Исследовать схемы алгебраического суммирования вводных сигналов (рис.3.6, 3.7):

а) рассчитать коэффициенты передачи инвертирующего сумматора, схемы сложения - вычитания;

б) проверить экспериментально результаты расчетов, используя встроенные в макет источники постоянного напряжения;

в) решить с помощью схемы сложения — вычитания систему двух алгебраиче­ских уравнений с двумя неизвестными.

4. Экспериментальные исследования

4.1. Ознакомиться с лабораторным стендом. Перед началом работы необходи­мо изучить паспортные данные ОУ К140УД7 и 574УД1А и записать их основ­ные параметры. Включить и откалибровать измерительные приборы С1-93, В7- 16А и ГЗ-112.

4.2. Исследовать схемы включения ОУ в качестве усилителя с внешней частот­ной коррекцией и схемы интегратора.

4.2.1. Использовать для проведения исследований схему 1 макета (рис.3.4) . перевести переключатель SA1 в положение 3. Разомкнуть контакты XS2. Закоротить вход XS1 на общий провод. Пронаблюдать форму и величину выходного напряжения ОУ.

4.2.2 Повторить п.4.2.1. переводя переключатель SA1 в положение 4.

4.2.3. Устранить самовозбуждение схемы замыканием XS2 и подбором значения корректирующей ёмкости C3.

4.2.4. Для определения постоянства произведения коэффициента усиления на полосу пропускания измерить UВЫХ схемы инвертирующего усилителя с различ­ным Кос на частоте входного сигнала около 1 МГц. Амплитуда входного сигнала не должна превышать 0,1 В.

4.2.5. Использовать для определения скорости нарастания UВЫХ схему 1 (рис. 3.4).

Установить значение Кос = 12.

4.2.6. Подать на вход схемы сигнал синусоидальной формы с частотой 2 кГц и подобрать его амплитуду так, чтобы UВЫХ усилителя было близким к макси­мально возможному.

4.2.7. Увеличить частоту синусоидального сигнала до тех пор, пока сигнал на выходе не станет близким к треугольному.

4.2.8. Измерить крутизну линейного участка UВЫХ. Эта крутизна ∆ UВЫХ /∆t рав­на скорости нарастания V.

4.2.9. Рассчитать частоту, при которой синусоидальный сигнал начнёт иска­жаться, если UВЫХ = ±5В (амплитудное значение).Использовать соотношение

V=2πf UВЫХ.MAX

4.2.10. Рассчитать, при каком амплитудном напряжении можно работать без искажений при полученных ограничениях, обусловленных скоростью нараста­ния, если частота UBX равна 2 МГц. Подтвердить измерением результат расчёта.

 

4.2.11. Используя данные значений элементов схемы интегратора, рассчи­тать полосу частот, в которой возможно интегрирование

Проверить расчёты экспериментально. Пронаблюдать выходной сигнал интегра­тора при подаче UBX прямоугольной формы.

4.3. Для исследования схемы дифференциатора (рис.3.5) подать на вход сигнал синусоидальной (прямоугольной) формы и пронаблюдать Uвых при раз­личных амплитудах и частотах входного сигнала.

4.4. Рассчитать коэффициенты передачи входного сигнала по различным входам для проведения исследований схем алгебраического сложения (рис. 3.6, 3.7). При помощи схемы, изображенной на рис.3.6, решить уравнение

Uвых= - ( Uвх.1 + 0,5Uвх.2 + 2Uвх.3 )

используя для этого встроенные в макет источники постоянного напряжения.

4.4.1. Написать для схемы сложения - вычитания (рис. 3.7) выражение для Uвых. Проверить экспериментально. Выполняется ли условие баланса схем?

 

5. Оформление отчета и анализ полученных результатов

5.1. Согласно п. 4.1 дайте краткое описание паспортных данных ОУ К574УД1А и К140УД7 и схем его включения в лабораторном макете. Схемы вы­полняются согласно требованиям ГОСТа.

5.1. Выполните требования пп. 5.2 - 5.4 лабораторной работы № 2.

6. Контрольные вопросы

6.1. Укажите причины, приводящие к появлению частотной зависимости коэффициента усиления ОУ.

6.2. Укажите условия, выполнение которых приводит к самовозбуждению ОУ.

6.3 . Какова связь между скоростью спада АЧХ ОУ и устойчивостью усили­теля?

6.4. Коэффициент усиления ОУ без ОС на постоянном токе равен 100000. Чему равен его коэффициент усиления без ОС на частоте среза?

6.5. За какое время Uвых ОУ может изменяться на 10 В, если скорость на­растания ОУ равна 1 В/мкс?

6.6. Объясните принцип действия схемы интегратора на основе ОУ.

6.7. Перечислите причины, по которым время интегрирования в реальных схемах ограничено.

6.8. Укажите способ компенсации для каждого из факторов, ограничиваю­щих время интегрирования.

6.9. Объясните назначения суммирующего усилителя.

 

 

Лабораторная работа № 4

ИССЛЕДОВАНИЕ АКТИВНЫХ ФИЛЬТРОВ

1. Цель работы

Исследование амплитудно-частотных и фазочастотных характеристик ак­тивных фильтров на основе ОУ.

Рекомендуемая литература [ 1 - 6. 14].

2. Общие сведения

Любой фильтр (активный, пассивный, т. е. не содержащий усилителей) про­пускает со своего входа на выход лишь определённую часть спектра частот. Фильтры классифицируются в зависимости от пропускаемой части частотного спектра.

Фильтры нижних частот (ФНЧ) пропускают на выход частоты, начиная от нулевой (постоянный ток) и до некоторой заданной частоты среза fcp, и ослаб­ляют частоты, превышающие fcp. Амплитудно-частотная характеристика (АЧХ) такого фильтра показана на рис. 4.1.

Диапазон частот от нуля до fcp называется полосой пропускания, а диапа­зон частот, превышающих fп, - полосой подавления (или заграждения). Интер­вал частот между fcp и fn называется переходным участком, а скорость, с кото­рой на этом участке изменяется величина ослабления, является важной характе­ристикой фильтра.

Частота среза fCp - это частота, при которой Uвых фильтра падает до уровня 0,707 от напряжения в полосе пропускания, т.е. падает на 3дБ; fn - частота, при которой Uвых составляет 0,1 от Uвых в полосе пропускания.

Фильтры верхних частот (ФВЧ) ослабляют частоты, начиная от нулевой и до частоты fср и пропускают все частоты, начиная с fCp и до верхнего частотного предела схемы. АЧХ фильтра ВЧ показана на рис. 4.2

 

Полосовой фильтр (рис. 4.3) пропускает частоты в полосе между нижней частотой среза f1 и верхней частотой среза f2. Все частоты ниже f1 и выше f2 ос­лабляются. Диапазоны частот от f’1 до f1 и от f2 до f'2 являются переходными участками. Геометрическое среднее частот f1 и f2 называется средней централь­ной частотой (f0), т.е. f0 =

Режекторный полосовой фильтр (заграждения) ослабляет частоты между f1 и f2 и пропускает все остальные. АЧХ такого фильтра представляет собой зер­кальное отображение характеристики полосового фильтра.

Активные фильтры имеют по сравнению с пассивными следующие пре­имущества: 1) в них используются только сопротивления и конденсаторы, т.е. компоненты, свойства которых ближе к идеальным, чем свойства катушек ин­дуктивности; 2) они относительно дешевы; 3) они могут обеспечивать усиление в полосе пропускания и, в отличие от пассивных фильтров, редко вносят суще­ственные потери; 4) использование в активных фильтрах ОУ обеспечивает раз­вязку входа от выхода, поэтому активные фильтры целесообразно делать много­каскадными, что улучшает их показатели; 5) активные фильтры относительно легко настраивать; 6) фильтры для очень низких частот могут быть построены из компонентов, имеющих умеренные значения параметров; 7) активные фильтры невелики по размерам и массе.

Активные фильтры имеют и недостатки. Они нуждаются в источнике пита­ния, их рабочий диапазон частот ограничен сверху максимальной рабочей часто­той ОУ. Для обеспечения высокого качества работы активных фильтров в их схемах следует использовать компоненты, параметры которых имеют малый раз­брос. Сопротивления и конденсаторы должны иметь малые температурные ко­эффициенты и малый временной дрейф параметров.

 

3. Программа работы.

3.1 Ознакомиться с лабораторным макетом 4 для исследования активных фильтров.

3.2. Исследовать амплитудно-частотные и фазочастотные характеристики активных фильтров схем 1-3 макета (рис.4.4 - 4.6.).

3.3. Исследовать амплитудно-частотную характеристику универсального фильтра (схема 4, рис.4.7.); фильтра ВЧ, фильтра НЧ ( выход 2), фильтра ПП ( выход 1), фильтра-пробки.

3.4. Исследовать амплитудно-частотные характеристики звеньев многокаскадного фильтра ( рис.4.8 ) и общую АЧХ фильтра.

 

 


Рис. 4.5. Активный фильтр (схема 2 макета)

 

 


Рис. 4.6. Активный фильтр (схема 3 макета)

 

 

 

Рис. 4.7. Универсальный фильтр

 

4. Экспериментальные исследования

 

4.1.Ознакомиться с лабораторным стендом.

4.2. Исследовать схему фильтра ИНУН (источник напряжения управляе­мый напряжением) (рис. 4.4). Для снятия АЧХ фильтров можно использовать встроенный в макет генератор сигнала синусоидальной формы с перестраивае­мой частотой.

Цифровой генератор сигнала с перестраиваемой частотой предназначен для исследования амплитудно-частотных характеристик фильтров, усилителей низ­кой частоты и т.п. Генератор может работать в двух режимах, выбираемых пере­ключателем SА9 «Дискрет/ГКЧ» (рис. 4.9).

В первом режиме (режиме генерации сетки частот) генерируется частота, оп­ределяемая положением переключателей SА1 - SА8. Величина частоты находит­ся суммированием весовых коэффициентов всех включенных переключателей и может принимать значения от 100 до 25600 Гц с шагом 100 Гц. Во втором режи­ме (режиме генератора качающейся частоты) осуществляется генерация сигнала качающейся частоты. Нижняя граница качания частоты определяется по вклю-

 

ченным переключателям SА1 - SА4 и может изменяться от 100 до 1500 Гц с ша­гом 100 Гц. Верхняя граничная частота определяется переключателями SА5 -SА8 и изменяется от 1,6 до 24 кГц с шагом 1,6 кГц.

На переднюю панель макета кроме переключателей SА1 - SА8 выведены гнезда выходного сигнала (амплитудой 1 и 0.1 В), гнездо выхода синхронизации для подачи сигнала синхронизации в режиме ГКЧ на вход X осциллографа, гнез­до «Метки частоты» - для подачи на второй вход двулучевого осциллографа ме­ток для отсчета частоты. Импульс метки появляется в момент времени, когда частота выходного сигнала генератора принимает значения 1. 2, 3,.... 25 кГц.

Для изучения АЧХ устройства на его вход подается сигнал с гнезда «Выход» генератора, выход устройства подключается к входу осциллографа Y1, сигнал с гнезда «Метки частоты» подается на вход Y2, осциллограф переключается в ре­жим внешней синхронизации и на вход синхронизации подается сигнал с гнезда «Выход синхронизации» генератора.

Примечания

1. В режиме ГКЧ при выключенных тумблерах установки нижней частоты SА1 —SА4 нижняя частота автоматически устанавливается 100 Гц.

2. В этом же режиме при отсутствии установки верхней граничной часто­ты генератор выдает фиксируемую частоту, определяемую положением тумбле­ров.

3. В случае установки в режиме ГКЧ нижней граничной частоты 1 кГц и более метки частоты не соответствуют частотам 1, 2, 3 кГц и т.д., хотя относи­тельное расстояние между метками равно 1 кГц.

 

Рис. 4.8. Многокаскадный фильтр (схема 5 макета)

 

 

Рис. 4.9. Цифровой генератор сигнала с перестраиваемой частотой

 

 

4.3. Предварительно рассчитать схему фильтра ИНУН (рис.4.4), реализую­щую фильтр НЧ Баттерворта второго порядка. Установить Fср = 2 кГц, а = 1,414, К = 23К4.

4.4. Подать на вход схемы (рис. 4.4) сигнал с генератора качающейся часто­ты. Выход схемы подключить на вход осциллографа. Засинхронизировать раз­вёртку осциллографа импульсами синхронизации со встроенного генератора. На второй вход осциллографа подать метки частоты и совместить их с изображе­ниями АЧХ фильтра.

4.5. Для снятия фазочастотной характеристики (ФЧХ) фильтра использовать генератор синусоидальных сигналов ГЗ-112 и двулучевой осциллограф С1-93. Исследования провести для фильтров НЧ и ВЧ Баттерворта и Чебышева.

4.6. Исследовать АЧХ и ФЧХ других фильтров макета 4 (рис. 4.5 - 4.8).

 

5.Оформление отчета и анализ

полученных результатов

 

5.1. Вычерчиваются схемы (по указанию преподавателя) и приводится их краткое описание. Схемы выполняются согласно требованиям ГОСТа.

5.2. Производятся расчёты, которые требуются в разделе «Эксперименталь­ные исследования», сравниваются результаты теоретических расчётов и экспе­риментов.

5.3. Приводятся диаграммы АЧХ и ФЧХ, полученные расчетным и экспе­риментальным путями.

5.4. Объясняются полученные зависимости и даются практические оценки полученных результатов.

 

6. Контрольные вопросы

 

6.1. Назовите четыре преимущества активных фильтров перед пассивными.

6.2. Нарисуйте АЧХ фильтров НЧ, ВЧ, ППФ и заграждающего фильтра. Обозначьте на рисунках полосу пропускания, полосу заграждения (подавления) и переходный участок.

6.4. Укажите связь между числом полюсов активного фильтра и наклоном характеристики на переходном участке.

6.5. Перечислите преимущества каждого из следующих типов фильтров: Баттерворта. Чебышева и Бесселя.

6.6. Укажите связь между величиной коэффициента затухания фильтра и его частотной характеристикой вблизи Fср.

Лабораторная работа № 5

ИССЛЕДОВАНИЕ ОУ С НЕЛИНЕЙНЫМИ ОБРАТНЫМИ СВЯЗЯМИ

 

1. Цель работы

Исследование основных схем включения ОУ с нелинейными обратными связями (ограничителей напряжения, функциональных преобразователей, схем типа «идеальный диод»).

Рекомендуемая литература [1-6].

2. Общие сведения

Для некоторых интересных применений ОУ необходима нелинейная обрат­ная связь (ОС). При помощи схем с нелинейной ОС можно аппроксимировать передаточные характеристики, линеаризовать характеристики датчиков, ограни­чивать сигналы по амплитуде, осуществлять математические операции и выпол­нять множество других задач. В основе большинства схем лежит использование нелинейности вольт-амперной характеристики переходов в полупроводниковых приборах: диодах, кремниевых стабилитронах и транзисторах. В одних схемах используются характеристики полупроводниковых приборов в режиме переклю­чения большим сигналом, в других - собственно нелинейность полупроводнико­вого перехода.

Чаще всего встречаются схемы, в которых нелинейный элемент включен в цепь ОС операционного усилителя. Схема ограничителя выходного напряжения инвертирующего усилителя на ОУ приведена на рис. 5.1,а, а его передаточная характеристика - на рис. 5.1,6.

Уровни ограничения определяются напряжением пробоя стабилитрона. Пе­редаточная характеристика, показанная на рис. 5.1,6, действительна для случая «идеального» стабилитрона, т.е. сопротивление открытого стабилитрона равно нулю, закрытого — бесконечности, и точка перегиба не имеет скругления..

 

\\

 

Рис. 5.1. Ограничитель выходного напряжения (а) и его передаточная характеристика (б)

Угловой коэффициент (коэффициент усиления) усилителя при Ывых < до­определяется выражением:

Koc= -Roc/R1

 

Если Uвых > Uст-, то угловой коэффициент будет близок к нулю (в случае идеального стабилитрона равен нулю). При увеличении входного напряжения Uвх напряжение Uвых не увеличивается, а остается на уровне напряжения про­боя стабилитрона Uст-

В передаточную характеристику ограничителя, в схеме которого находится реальный стабилитрон, вносятся все отклонения вольт-амперной характеристики реального стабилитрона от его идеализированной (закругление точек перегиба, угловой коэффициент не равен нулю).

Существуют схемы, в которых влияние неидеальности вольт-амперной ха­рактеристики сведено к минимуму и практически почти не имеет значения. В та­ких схемах влияние нелинейности переходного участка полупроводникового пе­рехода и его чувствительности к температуре снижается за счет значительного усиления ОУ (при разомкнутой ОС) пропорционально коэффициенту усиления в контуре ОС.

Прецизионное ограничение по уровням, отличающимся от нуля, можно по­лучить в схеме, показанной на рис. 5.2. Оба уровня ограничения (положитель­ный и отрицательный) задаются диодной мостовой схемой.

 

Рис. 5.2. Прецизионный ограничитель

 

Поскольку диодный мост включен в контур обратной связи, влияние нели­нейности, температурной чувствительности и прямого сопротивления входящих в него элементов уменьшается пропорционально усилению в контур обратной связи. Поэтому изломы переходной характеристики ограничителя острые и поч­ти не зависят от параметров диодов. При помощи ОУ, у которого в контур об-

ратной связи включена соответствующая нелинейная цепь, можно осуществлять аппроксимацию нелинейных функций. Благодаря этому можно реализовать ши­рокий класс нелинейных функциональных преобразователей. Пример схемы преобразователя, иллюстрирующий изложенный принцип, показан на рис. 5.3.

 

Рис. 5.3. Нелинейный функциональный преобразователь

 

Наклон графика зависимости выходного напряжения от входного определя­ется зависимостью:

Koc=Uвых/Uвх=-Roc/R1

 

 

Рис. 5.4. График зависимости выходного напряжения от входного

 

 

Поскольку диодный мост включен в контур обратной связи, влияние нели­нейности, температурной чувствительности и прямого сопротивления входящих в него элементов уменьшается пропорционально усилению в контур обратной связи. Поэтому изломы переходной характеристики ограничителя острые и почти не зависят от параметров диодов. При помощи ОУ, у которого в контур обратной связи включена соответствующая нелинейная цепь, можно осуществлять аппроксимацию нелинейных функций. Благодаря этому можно реализовать ши­рокий класс нелинейных функциональных преобразователей. Пример схемы преобразователя, иллюстрирующий изложенный принцип, показан на рис. 5.3.

Рис. 5.3. Нелинейный функциональный преобразователь

Наклон графика зависимости выходного напряжения от входного определя­ется зависимостью

Рис. 5.4. График зависимости выходного напряжения от входного

при условии, что UВХ меньше напряжения пробоя стабилитрона VD1. На рис.5.4 представлена зависимость UВЫХ от UВХ при различных значениях входного на­пряжения.

При значениях UВХ, заключенного между UСТ.1 и UСТ.2, выходное напряже­ние

При этом наклон графика зависимости UВЫХ от UВХ можно описать выраже­нием

Аналогично, при условии UСТ.2 ≤ UВЫХ ≤ UСТ.3

и при UВХ < UСТ.1

Чем короче длина каждого отрезка, на которые разбит диапазон изменения UВХ, тем выше точность достижения в аппроксимации нелинейной зависимости. Если изменить полярность включения стабилитронов, схема будет работать при отрицательных входных напряжениях.

3. Программа работы

3.1. Ознакомиться с лабораторным макетом 5 для исследования ОУ с нели­нейными обратными связями.

3.2. Исследовать схему двустороннего ограничителя напряжения (рис. 5.5): рассчитать и проверить экспериментально уровни ограничения выходного на­пряжения и угловой коэффициент усилителя для различных значений UВХ.

3.3. Проверить п. 3.2 для схемы, изображенной на рис. 5.6.

3.4. Исследовать схему функционального преобразователя (рис. 5.7):

а) рассчитать и экспериментально проверить угловой коэффициент при различных значениях величин резисторов R7-R10;

б) пронаблюдать выходное напряжение преобразователя при подаче на его вход напряжений треугольной и синусоидальной формы.

3.5. Исследовать схему преобразователя напряжения треугольной формы в синусоидальное (рис. 5.8).

3.6. Исследовать схему прецизионного амплитудного детектора (рис.5.9).

4. Экспериментальные исследования

4.1. Ознакомиться с лабораторным стендом. Перед началом работы вклю­чить и откалибровать осциллограф С1-93 и генератор ГЗ-111, изучить встроен­ный в стенд генератор треугольного и пилообразного напряжения.

Рис. 5.5. Двусторонний ограничитель напряжения (схема 1)

4.2. Исследовать схему двустороннего ограничителя напряжения (рис. 5.5).


Дата добавления: 2014-12-23; просмотров: 23; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.115 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты