![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Нормальный закон распределения.Нормальный закон распределения (закон Гаусса) играет исключительно важную роль в теории вероятностей и занимает среди других законов распределения особое положение. Это — наиболее часто встречающийся на практике закон распределения. Главная особенность, выделяющая нормальный закон среди других, состоит в том, что он является предельным, к которому приближаются другие законы распределения при весьма часто встречающихся условиях. Можно доказать, что сумма достаточно большого числа независимых случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, ошибки стрельбы и т. д., могут быть представлены как суммы весьма большого числа сравнительно малых слагаемых — элементарных ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Каким бы законам распределения ни были подчинены отдельные элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются, и сумма оказывается подчиненной закону, близкому к нормальному. Нормальный закон распределения характеризуется плотностью вероятности вида:
Кривая распределения по нормальному закону имеет симметричный холмообразный вид (рис. 4.6.1). Максимальная ордината кривой, равная Выясним смысл параметров m и
Применяя замену переменной,
Нетрудно убедиться, что первый из двух интервалов равен нулю; второй представляет собой известный интеграл Эйлера — Пуассона:
Следовательно,
Вычислим дисперсию величины X.
Применив снова замену переменной,
Интегрируя по частям, получим:
Первое слагаемое в фигурных скобках равно нулю (так как Следовательно, параметр Из соотношения (4.6.1) следует, что центром симметрии распределения является центр рассеивания т. Это ясно из того, что при изменении знака разности (x - т) на обратный выражение (4.6.1) не меняется. Если изменять центр рассеивания т кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы (рис. 4.6.2). Параметр На рис. 4.6.3 показаны три нормальные кривые (I, II, III) при m = 0; из них кривая I соответствует самому большому, а кривая III — самому малому значению Размерность параметра
|