КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Функция распределения системы двух случайных величин.Функцией распределения системы двух случайных величин (X,Y) называется вероятность совместного выполнения двух неравенств X<х и Y<у:
Если пользоваться для геометрической интерпретации системы образом случайной точки (случайного вектора), то функция распределения F(х,у) есть не что иное, как вероятность попадания случайной точки (X,Y) в бесконечный квадрант с вершиной в точке (х,у), лежащий левее и ниже ее (рис. 5.2.1). Сформулируем свойства функции распределения системы случайных величин. 1. Функция распределения F(x,у) есть неубывающая функция обоих своих аргументов, т. е. В этом свойстве функции F(х) можно наглядно убедиться, пользуясь геометрической интерпретацией функции распределения как вероятности попадания в квадрант с вершиной (х,у) (рис. 5.2.1). Действительно, увеличивая х (смещая правую границу квадранта вправо) или увеличивая у (смещая верхнюю границу вверх), мы, очевидно, не можем уменьшить вероятность попадания в этот квадрант. 2. Повсюду на функция распределения равна нулю: F(x, ) = F( , y) = F( , ) = 0. В этом свойстве мы наглядно убеждаемся, неограниченно отодвигая влево правую границу квадранта (x ) или вниз его верхнюю границу (у ) или делая это одновременно с обеими границами; при этом вероятность попадания в квадрант стремится к нулю. 3. При одном из аргументов, равном , функция распределения системы превращается в маргинальную функцию распределения случайной величины, соответствующей другому аргументу: F (x, ) = Fl (x), F ( , у) = F2 (у), где F1(x), F2(y) — соответственно маргинальные функции распределения случайных величин X и Y. 4. Если оба аргумента равны , функция распределения системы равна единице: F( , ) = 1 Действительно, при x , y квадрант с вершиной (х,у) в пределе обращается во всю плоскость хОу, попадание в которую есть достоверное событие. Условимся событие, состоящее в попадании случайной точки (X, Y) в область D, обозначать символом (X, Y) D. Вероятность попадания случайной точки в заданную область выражается наиболее просто в том случае, когда эта область представляет собой прямоугольник со сторонами, параллельными координатным осям. Выразим через функцию распределения системы вероятность попадания случайной точки (X, Y) в прямоугольник R, ограниченный абсциссами и ординатами и (рис. 5.2.2). Тогда событие (X,Y) R будет равносильно произведению двух событий: Х и Х . Выразим вероятность этого события через
функцию распределения системы. Для этого рассмотрим на плоскости хОу четыре бесконечных квадранта с вершинами в точках рис. 5.2.3. Очевидно, вероятность попадания в прямоугольник R равна вероятности попадания в квадрант минус вероятность попадания в квадрант минус вероятность попадания в квадрант плюс вероятность попадания в квадрант (так как мы дважды вычли вероятность попадания в этот квадрант). Отсюда получаем формулу, выражающую вероятность попадания в прямоугольник через функцию распределения системы:
|