Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Предельные теоремы для характеристических функций.




Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно. Формулировки теорем приведем без доказательства.

Прямая предельная теорема. Если последовательность функций распределения

 

сходится в основном к функции распределения F(х), то последовательность характеристических функций

 

сходится к характеристической функции qx(t). Эта сходимость равномерна в каждом конечном интервале t.

Обратная предельная теорема. Если последовательность характеристических функций

 

сходится к непрерывной функции qx(t), то последовательность функций распределения

 

сходится в основном к некоторой функции распределения F(x).

Заметим, что условия теоремы выполнены в каждом из двух следующих случаев:

1) Последовательность характеристических функций сходится к некоторой функции qx(t) равномерно в каждом конечном интервале t.

2) Последовательность характеристических функций сходится к характеристической функции qx(t).



Поделиться:

Дата добавления: 2014-12-23; просмотров: 260; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты