Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Сходимость последовательностей случайных величин.




Читайте также:
  1. Агрегатные индексы. Проблема соизмерения индексируемых величин.
  2. Билет №8. Закон распределения системы случайных величин. Функция и плотность двумерной случайной величины и их свойства.
  3. Вариационный ряд и методы вычисления средних величин.
  4. Види відносних величин.
  5. Виды относительных величин.
  6. Виды средних величин.
  7. Генераторы псевдослучайных чисел: упражнение
  8. Гипотеза о функции нормальногораспределения случайных ошибок
  9. Действующее и среднее значения несинусоидальных периодических электрических величин.
  10. Док-ть сходимость посл-ти (1)

Пусть на вероятностном пространстве определены случайные величины со значениями .

Определение 1. Последовательность сходится по вероятности (п.в) к величине X, если

(9.1.1)

Обозначим сходимость к X по вероятности символом .

Определение 2. Последовательность сходится к X почти наверное (п.н) (с вероятностью единица), если

(9.1.2)

Обозначим эту сходимость символом .

Определение 3. Говорят, последовательность сходится к X в среднеквадратическом (с.к.), если

(9.1.3)

Обозначим эту сходимость символом .

Определение 4. Последовательность сходится к X по распределению (п.р) с обозначением , если

(9.1.4)

Здесь Fn,F- функции распределения Xn и X, причем сходимость {Fn} к F подразумевается для всех x, за исключением, может быть, точек разрыва F.

Сходимости {Xn} к X, введенные определениями 1-4, связаны между собою отношениями, показанными на рис. 9.1.1.

Рис. 9.1.1.


Дата добавления: 2014-12-23; просмотров: 20; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты