Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Теорема Лапласа.




Если - число появлений случайного события А в п независимых повторных испытаниях с исходами , вероятности которых , то

(10.3.1)

Доказательство. Пусть - число появлений события А в i-м независимом повторном испытании в серии из п испытаний. Очевидно это - дискретная случайная величина с рядом распределения:

q р

где .

Очевидно, существуют

 
(10.3.2)
 

В силу независимости испытаний случайные величины можно считать независимыми.

Таким образом, для рассматриваемых здесь случайных величин выполняются все условия теоремы Ляпунова.

Следовательно, имеет место соотношение (10.2.2).

Случайную величину в выражении (10.2.2) в рассматриваемом случае можно представить в виде

(10.3.3)

где

 

при условии независимости случайных величин .

Таким образом, доказано, что если выполнены условия теоремы Лапласа, то

 

Отсюда, учитывая определение стандартного нормального закона , находим, что соотношение (10.3.1) справедливо.



Поделиться:

Дата добавления: 2014-12-23; просмотров: 104; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты