Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Линейное (векторное) пространство




Читайте также:
  1. II.3.3) Сила и пространство действия законов.
  2. N-мерное метрическое пространство, расстояние между точками.
  3. Алгебра событий. Пространство элементарных событий.
  4. Брюшная стенка, брюшина, забрюшинное пространство
  5. БЮДЖЕТНАЯ ЛИНИЯ И БЮДЖЕТНОЕ ПРОСТРАНСТВО ПОТРЕБИТЕЛЯ. ВЛИЯНИЕ ДОХОДА И ЦЕН НА ПОЛОЖЕНИЕ БЮДЖЕТНОЙ ЛИНИИ.
  6. Время и пространство
  7. Время и пространство в социально-гуманитарном знании
  8. Геометрическое и социальное пространство
  9. Движение, пространство, время и отражение как атрибуты бытия
  10. Исследование операций. Линейное программирование.

Как известно, линейные операции (сложение, вычитание, умножение на число) определены по-своему для каждого множества (числа, многочлены, направленные отрезки, матрицы). Сами операции различны, но их свойства одинаковы.

Эта общность свойств позволяет обобщить понятие линейных операций для любых множеств вне зависимости от того, что это за множества (числа, матрицы и т.д.).

Для того, чтобы дать определение линейного (векторного) пространства рассмотрим некоторое множество L действительных элементов, для которых определены операции сложения и умножения на число.

Эти операции обладают свойствами:

1) Коммутативность + = +

2) Ассоциативность ( + ) + = + ( + )

3)Существует такой нулевой вектор , что + = для " Î L

4) Для " Î L существует вектор = - , такой, что + =

5)1× =

6) a(b ) = (ab)

7) Распределительный закон (a + b) = a + b

8) a( + ) = a + a

Определение: Множество L, элементы которого обладают перечисленными выше свойствами, называется линейным (векторным) пространством, а его элементы называются векторами.

 

Линейные преобразования

Определение: Будем считать, что в линейном пространстве L задано некоторое линейное преобразование А, если любому элементу Î L по некоторому правилу ставится в соответствие элемент А Î L.

Определение: Преобразование А называется линейным, если для любых векторов Î L и Î L и любого a верно:

A( + ) = A +A

A(a ) = aA

 

Пример. Является ли А линейным преобразованием. А = + ; ¹ 0.

Запишем преобразование А для какого- либо элемента . А = +

Проверим, выполняется ли правило операции сложения для этого преобразования А( + ) = + + ; A( ) + A( ) = + + + , что верно только при = 0, т.е. данное преобразование А нелинейное.

 


Дата добавления: 2014-12-30; просмотров: 12; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты