Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Некоторые замечательные пределы




Читайте также:
  1. I. ПРЕДЕЛЫ
  2. Величина отражения витринита, пределы изменения в зависимости от метаморфизма углей. Прогноз палеотемператур в осадочном бассейне. Выделение ГЗН(Билет№1,5)
  3. Визуальные эргономические параметры ВДТ и пределы их измерений
  4. Война и некоторые аспекты ее международно-правового регулирования
  5. ВОПРОС 4. Право и пределы полномочий должностных лиц органов исполнительной власти и консульских учреждений РК по совершению нотариальных действий
  6. ГЛАВА 12. Некоторые общие замечания о споре
  7. Глава 4. НЕКОТОРЫЕ ДОПОЛНЕНИЯ
  8. Естественные пределы точности измерений
  9. За пределы слов и звуков
  10. Закон стоимости. Возможности и пределы действия рыночного хозяйства. Модель экономического оборота

, где P(x) = a0xn + a1xn-1 +…+an,

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Итого:

Первый замечательный предел

Второй замечательный предел

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

Пример. Найти предел.

Пример. Найти предел.

Пример. Найти предел.

 

Пример. Найти предел.

Пример. Найти предел.

Пример. Найти предел .

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

Пример. Найти предел.

домножим числитель и знаменатель дроби на сопряженное выражение: =

= .

 

Пример. Найти предел.

Пример. Найти предел .

Разложим числитель и знаменатель на множители.

x2 – 3x + 2 = (x – 1)(x – 2)

x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3), т.к.

x3 – 6x2 + 11x – 6 x - 1

x3 – x2 x2 – 5x + 6

- 5x2 + 11x

- 5x2 + 5x

6x - 6

6x - 6 0

 

x2 – 5x + 6 = (x – 2)(x – 3)

Тогда

 

Пример. Найти предел.

 

- не определен, т.к. при стремлении х к 2 имеют место различные односторонние пределы -∞ и +∞.

 


Дата добавления: 2014-12-30; просмотров: 19; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты