КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Определение. Числа и называются комплексно – сопряженными.Определение. Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части: Определение. Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части. Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел. Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.
у A(a, b)
r b j
0 a x Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые. С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.
|