Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Действия с комплексными числами




Читайте также:
  1. II.3.3) Сила и пространство действия законов.
  2. V. ОСНОВНЫЕ СВОЙСТВА ДЕЙСТВИЯ ВРЕМЕНИ
  3. VI.2.2.) Требования к личности и действиям опекуна.
  4. VI.3.1. Принципы действия
  5. А) Антихолинэстеразные средства обратимого действия
  6. А) Если на систему оказано воздействие, то она будет действовать таким образом, чтобы уменьшить влияние этого воздействия
  7. А. Оппозиция логичных и нелогичных действий как исходноеотношение социальной системы. Теория действия Парето и теория действия Вебера
  8. Адреномиметические средства прямого действия. Классификация. Механизм действия. Фармакологическая характеристика отдельных препаратов. Применение.
  9. Активные действия
  10. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.

Основные действия с комплексными числами вытекают из действий с многочленами.

1) Сложение и вычитание

 

 

2) Умножение

 

В тригонометрической форме:

,

В случае комплексно – сопряженных чисел:

 

3) Деление

 

В тригонометрической форме:

 

4) Возведение в степень

Из операции умножения комплексных чисел следует, что

В общем случае получим:

,

где n – целое положительное число.

 

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

Пример. Найти формулы sin2j и cos2j.

Рассмотрим некоторое комплексное число

Тогда с одной стороны .

По формуле Муавра:

Приравнивая, получим

Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то

Получили известные формулы двойного угла.

 

5) Извлечение корня из комплексного числа

Возводя в степень, получим:

Отсюда:

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

Пример. Даны два комплексных числа . Требуется а) найти значение выражения в алгебраической форме, б) для числа найти тригонометрическую форму, найти z20, найти корни уравнения

 

a) Очевидно, справедливо следующее преобразование:

Далее производим деление двух комплексных чисел:

 

 

Получаем значение заданного выражения: 16(-i)4 = 16i4 =16.

 

б) Число представим в виде , где

Тогда .

Для нахождения воспльзуемся формулой Муавра.

Если , то

 

 


Дата добавления: 2014-12-30; просмотров: 7; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.017 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты