Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Матрицы линейных преобразований




Читайте также:
  1. I. ПОНЯТИЕ МАТРИЦЫ.
  2. L – класс линейных функций.
  3. Автоматические регуляторы. Определение закона регулирования регулятора (на примере САР теплообменника). Классификация линейных регуляторов. Нелинейный регулятор (пример)
  4. Анализ работы нелинейных систем по методу А.А.Вавилова
  5. Более подробно техника использования матрицы многокритериальной оценки изложена в учебном пособии на стр. 146 – 148.
  6. В. Социальная политика и ее последствия. Итоги экономических преобразований
  7. Вид преобразований при коллинеарных осях
  8. Вычисление собственных значений матрицы Методом Данилевского
  9. Геометрический смысл линейных неравенств
  10. Группировка страновых рынков при помощи портфельной матрицы

Пусть в n- мерном линейном пространстве с базисом , ,…, задано линейное преобразование А. Тогда векторы А ,…,А - также векторы этого пространства и их можно представить в виде линейной комбинации векторов базиса:

 

A = a11 + a21 +…+ an1

A = a12 + a22 +…+ an2

……………………………….

A = an1 + an2 +…+ ann

Тогда матрица А = называется матрицей линейного преобразования А.

Если в пространстве L взять вектор = x1 + x2 +…+ xn , то A Î L.

, где

……………………………..

Эти равенства можно назвать линейным преобразованием в базисе , ,…, .

В матричном виде:

, А× ,

 

Пример. Найти матрицу линейного преобразования, заданного в виде:

x¢ = x + y

y¢ = y + z

z¢ = z + x

x¢ = 1×x + 1×y + 0×z

y¢ = 0×x + 1×y + 1×z

z¢ = 1×x + 0×y + 1×z

A =

На практике действия над линейными преобразованиями сводятся к действиям над их матрицами.

Определение: Если вектор переводится в вектор линейным преобразованием с матрицей А, а вектор в вектор линейным преобразованием с матрицей В, то последовательное применение этих преобразований равносильно линейному преобразованию, переводящему вектор в вектор (оно называется произведением составляющих преобразований).

С = В×А

Пример. Задано линейное преобразование А, переводящее вектор в вектор и линейное преобразование В, переводящее вектор в вектор . Найти матрицу линейного преобразования, переводящего вектор в вектор .

С = В×А

 

Т.е.

Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.

 


Дата добавления: 2014-12-30; просмотров: 7; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты