КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Предел функции при стремлении аргумента к бесконечностиОпределение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство При этом предполагается, что функция f(x) определена в окрестности бесконечности. Записывают: Графически можно представить: y y
A A
0 х 0 x
y y
A A
0 0 x x
Аналогично можно определить пределы для любого х>M и для любого х<M.
Основные теоремы о пределах Теорема 1. , где С = const. Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а. Теорема 2. Доказательство этой теоремы будет приведено ниже. Теорема 3. Следствие.
Теорема 4. при Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0. Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0. Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и . Пример. Найти предел Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим: Пример. Найти предел . Так как 1–cosx = при х®0, то . Пример. Найти предел Если a и b - бесконечно малые при х®а, причем b - бесконечно малая более высокого порядка, чем a, то g = a + b - бесконечно малая, эквивалентная a. Это можно доказать следующим равенством . Тогда говорят, что a - главная частьбесконечно малой функции g.
Пример. Функция х2 +х – бесконечно малая при х®0, х – главная часть этой функции. Чтобы показать это, запишем a = х2, b = х, тогда .
|