Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Контрольная работа № 2 4 страница




z = x2 + 2xy + 3y2; A (2; 1); B (1,96; 1,04).

Задание 10.

Дана функция u = f (x; y; z), точка А (x0; y0; z0) и вектор 1; а2; a3). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u = x2 + u2 + z2; A (1; 1; 1); (2; 1; 3).

 

Вариант 23

Задание 1.

Найти производные данных функций.

а)
б)
в)
г);
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,79, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-1/3x3+3,5x2-10x-1/3; [-1;7].

Задание 5.

Прочность балки прямоугольного сечения пропорциональна ширине балки и квадрату ее высоты. Из бревна, диаметр которого 30 см, необходимо изготовить балку наибольшей прочности. Определить стороны прямоугольного сечения наибольшей прочности.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б)

Задание 7.

Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением в точке t = p/2.

Задание 8.

Найти полную производную сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 3x2 + 2y2 + xy; A (-1; 3); B (-0,98; 2,97).

Задание 10.

Дана функция u = f (x; y; z), точка А (x0; y0; z0) и вектор 1; а2; a3). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u = x2 + u2 + z2; A (1; 1; 1); (1; 1; 1).

 

Вариант 24

Задание 1.

Найти производные данных функций.

а)
б)
в)
г);
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а); б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,62, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-4x3/3+2x2; [-1;3].

 

Задание 5.

Вычислить наименьший периметр треугольника, построенного на прямоугольной системе координат, если две его вершины имеют координаты (0;2) и (6;2), а третья лежит на оси абсцисс.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Составить уравнение касательной и нормальной плоскости к кривой в точке t= .

Задание 8.

Найти полную производную сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 2xy + 3y2 – 5x; A (3; 4); B (3,05; 3,95).

Задание 10.

Дана функция z = f (x; y), точки А (x0; y0) и А11;y1). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = 5x2 -3x-y-1; A (2; 1); А1 (5; 5).

 

Вариант 25

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,22, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-x3-4x2+3x+8; [-2;3].

Задание 5.

Тело движется по закону s(t)=62,6 +54t2-0,2t5. В какой момент времени тело имеет наибольшую скорость? Каковы скорость и ускорение в этот момент времени? Какой путь пройдет тело до того же момента времени?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Составить уравнения касательной к кривой в точке t=0.

Задание 8.

Найти частные производные сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + 3xy + 2y2 ; A (1; 3); B (1,03; 2,97).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = x2 – xy + y2; A (1; 1); (6; 8).

 

Вариант 26

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при a=0,53, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-1/6x3-1/4x2+x-; [-3;2].

Задание 5.

Гипотенуза прямоугольного треугольника равна с . При каком остром угле треугольника его площадь окажется наибольшей и чему она равна?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Составить уравнение касательной к кривой в точке t=1.

Задание 8.

Найти полную производную сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = y2 + 2x2 +3x + 4y – 2; A (3; 4); B (2,98; 3,91).

Задание 10.

Дана функция u = f (x; y; z), точка А (x0; y0; z0) и вектор 1; а2; a3). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u = ln(x2+y2+z2); A (1; 2; 1); =2i+4j+4k.

Вариант 27

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д).

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,39, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=2x3-6x; [-1;2].

Задание 5.

Найти на оси Ох точку, сумма квадратов расстояний которой от точек (2;4) и (8;2) имеет наименьшее значение.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Показать, что векторы и перпендикулярны.

Задание 8.

Найти полную производную сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 2x2 + 2y2 + 10x + 8y; A (6; 4); B (6,05; 3,98).

Задание 10.

Дана функция u = f (x; y; z), точка А (x0; y0; z0) и вектор 1; а2; a3). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u = ; А (x0; y0; z0); a =6i+3j-6k.

 

Вариант 28

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,81, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=-5x3+6x2+8; [-2;2].

Задание 5.

Найти наибольшую площадь прямоугольника, имеющего периметр 48 см.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением в точке t = p/2.

Задание 8.

Найти частные производные сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 2x2 + 4xy + 6y2 ; A (4; 2); B (3,96; 2,04).

Задание 10.

Дана функция u = f (x; y; z), точки А (x0; y0; z0) и А11; y1; z1). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u = ; A (1; 1; 1); А1 (3; 2; 3).

Вариант 29

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а)б) .

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,14, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=1/6x3-2x; [-3;4].

Задание 5.

К гальваническому источнику тока с электродвижущей силой в 4 в и внутренним сопротивлением 1 ом подключено сопротивление R. При каком значении R можно получить наибольшую мощность во внешней цепи? Определить наибольшую мощность тока во внешней цепи.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Найти частные производные сложной функции:

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 6x2 - 2xy +2x + 2y; A (2; 6); B (2,06; 5,92).

Задание 10.

Дана функция u = f (x; y; z), точки А (x0; y0; z0) и А11; y1; z1). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

u =xy2z3; A (3; 2; 1); А1 (5; 4; 2).

Вариант 30

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д).

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).


Поделиться:

Дата добавления: 2014-12-30; просмотров: 247; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты