КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Контрольная работа № 2 1 страница«Дифференцирование» (2-ой семестр) Вариант 1 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = x / (x2-1); б) x = cos (t / 2); y = t – sin t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,49, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f(x)=x3-12x+7; [0;3]. Задание 5. Требуется изготовить из жести ведро цилиндрической формы без крышки данного объема V. Каковы должны быть высота ведра и радиус его дна, чтобы на его изготовление ушло наименьшее количество жести? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 + xy + y2 ; A (1; 2); B (1,02; 1,96). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = x2 + xy + y2 ; A (1; 1); a (2; -1).
Вариант 2 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = ln ctg2x; б) x = t3 + 8t; y = t5 +2t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,33, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. Равнобедренный треугольник, вписанный в окружность радиуса R, вращается вокруг прямой, которая проходит через его вершину параллельно основанию. Какова должна быть высота этого треугольника, чтобы тело, полученное в результате его вращения, имело наибольший объем? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. б) . Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 3x2 - xy + x + y; A (1; 3); B (1,06; 1,92). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = 2x2 + 3xy + y2; A (2; 1); a (3; -4).
Вариант 3 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = x3 ln x; б) x = t – sin t; y = 1 – cos t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,75, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. Прямоугольник вписан в эллипс с осями 2а и 2в. Каковы должны быть стороны прямоугольника, чтобы его площадь была наибольшей? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) . Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 + 3xy + 6y; A (4; 1); B (3,96; 1,03). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = ln (5x2 + 3y2); A (1; 1); a (3; 2).
Вариант 4 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = x arctg x; б) x = e2 t; y = cos t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,63, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. Найти радиус основания и высоту цилиндра наибольшего объема, который можно вписать в шар радиуса R. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) . Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 – y2 +6x + 3y; A (2; 3); B (2,02; 2,97). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = ln (5x2 + 4y2); A (1; 1); a (2; -1).
Вариант 5 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = arctg x; б) x = 3cos2 t; y = 2 sin3 t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,21, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. Найти радиус основания и высоту конуса наименьшего объема, описанного около шара радиуса R. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) . Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 + 2xy + 3y2; A (2; 1); B (1,96; 1,04). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = 5x2 + 6xy; A (2; 1); a (1; 2). Вариант 6 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = ectg3x; б) x = 3 cos t ; y = 4 sin2 t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при a=0,55, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. При каких линейных размерах закрытая цилиндрическая банка данной вместимости, будет иметь наименьшую полную поверхность? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) . Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 + y2 + 2x + y – 1; A (2; 4); B (1,98; 3,91). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = arctg (xy2); A (2; 3); a (4; -3). Вариант 7 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = ex cos x; б) x = 3 t – t3; y = 3 t3. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,37, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = . Задание 5. Окно имеет форму прямоугольника, завершенного полукругом. Периметр окна равен а. При каких размерах сторон прямоугольника окно будет пропускать наибольшее количество света? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б). Задание 7. Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.
Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 3x2 + 2y2 + xy; A (-1; 3); B (-0,98; 2,97). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = arсsin (x2 / y); A (1; 2); a (5; -12). Вариант 8 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = e-x sin x; б) x = 2t – t3; y = 2t2. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,83, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].
|