Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Контрольная работа № 2 1 страница




«Дифференцирование»

(2-ой семестр)

Вариант 1

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = x / (x2-1); б) x = cos (t / 2); y = t – sin t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,49, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f(x)=x3-12x+7; [0;3].

Задание 5.

Требуется изготовить из жести ведро цилиндрической формы без крышки данного объема V. Каковы должны быть высота ведра и радиус его дна, чтобы на его изготовление ушло наименьшее количество жести?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б)

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + xy + y2 ; A (1; 2); B (1,02; 1,96).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = x2 + xy + y2 ; A (1; 1); a (2; -1).

 

Вариант 2

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д) .

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = ln ctg2x; б) x = t3 + 8t; y = t5 +2t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,33, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

Равнобедренный треугольник, вписанный в окружность радиуса R, вращается вокруг прямой, которая проходит через его вершину параллельно основанию. Какова должна быть высота этого треугольника, чтобы тело, полученное в результате его вращения, имело наибольший объем?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 3x2 - xy + x + y; A (1; 3); B (1,06; 1,92).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = 2x2 + 3xy + y2; A (2; 1); a (3; -4).

 

Вариант 3

Задание 1.

Найти производные данных функций.

а)
б)
в)
г) ;
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = x3 ln x; б) x = t – sin t; y = 1 – cos t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,75, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

Прямоугольник вписан в эллипс с осями 2а и 2в. Каковы должны быть стороны прямоугольника, чтобы его площадь была наибольшей?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + 3xy + 6y; A (4; 1); B (3,96; 1,03).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = ln (5x2 + 3y2); A (1; 1); a (3; 2).

 

Вариант 4

Задание 1.

Найти производные данных функций.

а)
б)
в)
г) ;
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = x arctg x; б) x = e2 t; y = cos t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,63, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

Найти радиус основания и высоту цилиндра наибольшего объема, который можно вписать в шар радиуса R.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 – y2 +6x + 3y; A (2; 3); B (2,02; 2,97).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = ln (5x2 + 4y2); A (1; 1); a (2; -1).

 

Вариант 5

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = arctg x; б) x = 3cos2 t; y = 2 sin3 t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,21, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

Найти радиус основания и высоту конуса наименьшего объема, описанного около шара радиуса R.

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + 2xy + 3y2; A (2; 1); B (1,96; 1,04).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = 5x2 + 6xy; A (2; 1); a (1; 2).

Вариант 6

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = ectg3x; б) x = 3 cos t ; y = 4 sin2 t.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при a=0,55, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

При каких линейных размерах закрытая цилиндрическая банка данной вместимости, будет иметь наименьшую полную поверхность?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б) .

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = x2 + y2 + 2x + y – 1; A (2; 4); B (1,98; 3,91).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = arctg (xy2); A (2; 3); a (4; -3).

Вариант 7

Задание 1.

Найти производные данных функций.

а)
б)
в)
г) ;
д) .

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = ex cos x; б) x = 3 t – t3; y = 3 t3.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,37, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].

f (x) = .

Задание 5.

Окно имеет форму прямоугольника, завершенного полукругом. Периметр окна равен а. При каких размерах сторон прямоугольника окно будет пропускать наибольшее количество света?

Задание 6.

Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график.

а) б).

Задание 7.

Найти уравнения касательной, уравнение нормальной плоскости линии r = r (t) в точке t0.

Задание 8.

Дана функция z = f (x; y). Показать, что:

F .

z = F =

Задание 9.

Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, поучающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).

z = 3x2 + 2y2 + xy; A (-1; 3); B (-0,98; 2,97).

Задание 10.

Дана функция z = f (x; y), точка А (x0; y0) и вектор 1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора .

z = arсsin (x2 / y); A (1; 2); a (5; -12).

Вариант 8

Задание 1.

Найти производные данных функций.

а)
б)
в)
г)
д)

Задание 2.

Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t).

а) у = e-x sin x; б) x = 2t – t3; y = 2t2.

Задание 3.

Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,83, с точностью до 0,001.

Задание 4.

Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в].


Поделиться:

Дата добавления: 2014-12-30; просмотров: 241; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты