КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Контрольная работа № 2 3 страницаЗадание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнения касательной и плоскости к кривой в точке . Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 3xy + 4y2 – 6x; A (4; 5); B (4,04; 4,95). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = ; A (3; 4); a (-3; 4).
Вариант 16 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = ln (2x-3); б) x (t) = 3(t – sin t); y = 3(1 – cos t). Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,61, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = Задание 5. Найти наибольший объем цилиндра, у которого полная поверхность равна S. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнения касательной и нормальной плоскости к винтовой линии в точке Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 2x2 + 2y2 + 10x + 8y; A (6; 4); B (6,05; 3,98). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = ; A (1; -2); a (1; 2).
Вариант 17 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = x sin x; б) x = t2 – 2 t; y = . Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,29, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = Задание 5. Определить максимальную площадь равнобедренного треугольника, боковая сторона которого равна l. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнение касательной и нормальной плоскости к кривойв точке . Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 - y2 –3xy; A (-2; 3); B (-1,98; 2,97). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = x2у +xy2 ; A (1; 1); a (6; -8).
Вариант 18 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = x ; б) x = e2t; y = . Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,69, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = Задание 5. Определить наименьшую площадь равнобедренного треугольника описанного вокруг окружности радиуса r. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнения касательной и нормальной плоскости кривой в точке . Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 2x2 + 4xy + 6y2 ; A (4; 2); B (3,96; 2,04). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = ln (2x +3y); A (2; 2); a (-3; 2).
Вариант 19 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = ; б) x = sin t; y = t - 3t3. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,51, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = Задание 5. Канал, ширина которого 27м. под прямым углом впадает в другой канал шириной 64 метра. Какова наибольшая длина бревен, которые можно сплавлять по этой системе каналов? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнения касательной и нормальной плоскости кривой в точке Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 4xy + 6y2 – 10x; A (2; 4); B (1,97; 4,03). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = arctg ; A (-1; 1); a (1; -1).
Вариант 20 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) у = 1/4x2 (2ln x – 3); б) x = cos2 t; y = 3 sin t. Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,81, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f (x) = Задание 5. По двум улицам движутся к перекрестку две автомашины с постоянными скоростями u1 и u2 . Считая, что улицы пересекаются под прямым углом, и зная, что в некоторый момент времени автомашины находятся от перекрестка на расстояниях a1 и а2 , определить, через какое время расстояние между ними станет наименьшим. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) б) Задание 7. Составить уравнения касательной и нормальной плоскости кривой в точке Задание 8. Дана функция z = f (x; y). Показать, что: F . z = F = Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = 6x2 - 2xy +2x + 2y; A (2; 6); B (2,06; 5,92). Задание 10. Дана функция z = f (x; y), точка А (x0; y0) и вектор (а1; а2). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = 6x2у2 +10xy2 ; A (2; 2); a (4; 2).
Вариант 21 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) б) . Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,47, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f(x)=x3-3x+3; [-1,5;1,5]. Задание 5. Определить стороны прямоугольника, вписанного в прямоугольную трапецию, имеющего наибольшую площадь, если АВ=6,СD=14,AD=10. Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) ; б) Задание 7. Найти уравнение касательной и нормали к циклоиде в точке, где t = . Задание 8. Найти полную производную сложной функции:
Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0). z = x2 + xy + y2 ; A (1; 2); B (1,02; 1,96). Задание 10. Дана функция z = f (x; y), точки А (x0; y0) и А1(х1;y1). Найти: 1) grad z в точке A; 2) производную в точке А по направлению вектора . z = 3x2 - xy + x + y; A (1; 3); B (1,06; 1,92).
Вариант 22 Задание 1. Найти производные данных функций.
Задание 2. Найти и для заданных функций: а) у = f (x); б) x = (t), у = (t). а) б) . Задание 3. Применяя формулу Тейлора с остаточным членом в формуле Лагранжа к функции f (x) = ex, вычислить значение ea при а = 0,31, с точностью до 0,001. Задание 4. Найти наибольшее и наименьшее значения функции у = f (x) на отрезке [а; в]. f(x)=x3+x2-8x; [-3;1]. Задание 5. Разбить число 8 на такие две части, чтобы сумма куба одной части и утроенной второй части была наименьшей. Чему равна эта сумма? Задание 6. Исследовать методами дифференциального исчисления функцию у = f (x) и используя результаты исследования, построить график. а) ; б) . Задание 7. Составить уравнение касательной и нормали к кривой x2+2xy2+4y4=6 в точке Р(1,-1). Задание 8. Найти полную производную сложной функции:
Задание 9. Дана функция Z = F (x; y) и две точки А (x0; y0) и В (x1; y1). Требуется: 1) вычислить значение z1 в точке В; 2) вычислить приближенное значение `z1 функции в точке В, исходя из значения z0 функции в точке А и заменив приращение функции при переходе от точке А к точке В дифференциалом; 3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции ее дифференциалом; 4) составить уравнение касательной плоскости к поверхности Z = F (x; y) в точке С (x0; y0; z0).
|