Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Контрольная работа №1 4 страница




Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

 

Задание 10.

Дано комплексное число z = 4-4 i. Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 22

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(2,1,0), b(1,-1,2), c(2,2,-1), и d(3,7,-7)..в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4 :

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Даны вершины треугольника А(1;-1), В(-2;1), С(3;5. Составить уравнение перпендикуляра, опущенного из вершины А на медиану проведенную на вершину В. Сделать чертеж.

Задание 5.

Написать уравнение геометрического места точек, сумма расстояний каждой из которых от точек F1(2;0) и F2(-2;0) равна 2 . Построить линию.

Задание 6.

Линия задана уравнением в полярной системе координат

 

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = +i. Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 23

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(16,4,6), b(8,12,20), c(6,-4,2), и d(14,8,22).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4 :

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Написать уравнение сторон и найти углы треугольника с вершинами А(0;7), В(6;-1), С(2;1). Сделать чертеж.

Задание 5.

Написать уравнение геометрического места точек, равноудаленных от точки F(2;2) и от оси Ох. Построить линию.

Задание 6.

Линия задана уравнением в полярной системе координат

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = . Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 24

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(2,14,6), b(6,8,4), c(8,16,10), и d(14,64,28).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4:А1(2,-1,1),А1(5,5,4), А3(3,2,-1), А4(4,1,3).

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Составить уравнение сторон и медиан треугольника с вершинами А(3;2), В(5;-2), С(1;0). Сделать чертеж.

Задание 5.

Написать уравнение геометрического места точек, разность расстояний каждой из которых от точек F1(-2;-2) и F2(2;2) равна 4. Построить линию.

Задание 6.

Линия задана уравнением в полярной системе координат

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = i. Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 25

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(9,-6,3), b(-3,3,-6), c(6,3,-9), и d(33,-18,15).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4 :А1(2,3,1), А2(4,1,2), А3(6,3,7), А4(-5,-4,8).

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2;7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Даны две противоположные вершины квадрата А(-1;3) и С(6;2). Составить уравнения его сторон. Сделать чертеж.

Задание 5.

Дана окружность x2+y2 = 4. Из точки ее А(-2;0)проведена хорда АВ и продолжена на расстоянии ВМ=АВ. Определить геометрическое место точки М. Сделать чертеж.

Задание 6.

Линия задана уравнением в полярной системе координат

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = . Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 26

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(4,14,6), b(6,2,16), c(4,-14,8), и d(32,28,54).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4:А1(2,-1,1), А2(5.5,4), А3(3,2,-1), А4(4,1,3).

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Даны две вершины треугольника М1(-10;2), М2(6;4); его высоты пересекаются в точке Р(5;2). Определить координаты третьей вершины М3. Сделать чертеж.

Задание 5.

Определить траекторию точки М, которая при своем движении остается втрое ближе от точки А(1;0), чем к прямой х=9. Сделать чертеж.

Задание 6.

Линия задана уравнением в полярной системе координат

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = .Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 27

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(3,6,9), b(6,-9,3), c(-3,6,3), и d(6,6,24).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4 :

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Вычислить площадь треугольника, отсекаемого прямой 3x-4y-12=0 от координатного угла. Сделать чертеж.

Задание 5.

Дана точка А(а;0). По оси Оy движется точка В. На прямой ВЕ, параллельной оси Ох. Откладываются отрезки ВМ И ВМ1 равные АВ. Определить геометрическое место точек М и М1. Сделать чертеж.

Задание 6.

Линия задана уравнением в полярной системе координат

Требуется:1)построить линию по точкам, начиная от до и придавая значения через промежуток ; 2)найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3)по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Задание 7.

Даны два линейных преобразования:

Средствами матричного исчисления найти преобразование, выражающее x//1, x//2, x//3 через x1, x2, x3.

Задание 8.

Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

А =

Задание 9.

Найти пределы функции, не пользуясь правилом Лопиталя.

а) в)
б) г)

Задание 10.

Дано комплексное число z = . Требуется 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z =0.

 

Вариант 28

Задание 1.

Дана система линейных уравнений

Доказать её совместность и решить двумя способами: 1) Методом Гаусса; 2) средствами матричного исчисления.

Задание 2.

Даны векторы a(-3,-6,-3), b(-6,3,-9), c(-9,3,-12), и d(-15,-3,-18).в некотором базисе. Показать, что векторы а, в, с образуют базис, и найти координаты вектора dв этом базисе.

Задание 3.

Даны координаты вершины пирамиды А1А2А3А4:

Найти:1)длину ребра А1А2; 2)угол между ребрами А1А2 И А1А4; 3)угол между ребром А1А4 и гранью А1А2А3; 4)площадь грани А1А2А3; 5)объем пирамиды; 6)уравнение прямой А1А2 ; 7)уравнение плоскости А1А2А3; 8)уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.

Задание 4.

Точка А(2;-5) является вершиной квадрата, одна из сторон которого лежит на прямой x-2y-7=0. Вычислить площадь этого квадрата. Сделать чертеж.

Задание 5.

Определить траекторию точки М, которая при своем движении остается вдвое ближе к точки А(-1;0), чем к прямой х=-4. Сделать чертеж.

Задание 6.

Линия задана уравнением в полярной системе координат


Поделиться:

Дата добавления: 2014-12-30; просмотров: 452; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты