Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Формула вероятности суммы совместных событий




(теорема сложения вероятностей)

В соответствии со свойством 3) классической вероятности вероятность суммы несовместных событий равна сумме вероятностей этих событий. А если события совместны?

Пусть мы имеем два совместных события А и В. Преобразуем их сумму в сумму несовместных событий (см. диаграмму Венна).

 

Подставляя второе выражение в первое, получим

. (2.10)

Пример. По мишени один раз стреляют два стрелка. Вероятность попадания первого стрелка в мишень р1 = 0,7, второго – р2 = 0,8. Какова вероятность того, что кто-нибудь из них попадет в мишень?

А = А1 + А2, где А попадание в мишень;

А1 – попал первый стрелок;

А2 – попал второй стрелок.

Р(А) = Р(А1 + А2) = Р(А1) + Р(А2) – Р(А1А2)=

= Р(А1) + Р(А2) – Р(А1 )Р(А2)=

= 0.7 + 0,8 – 0,7· 0,8 = 0,94.

Получим вероятность суммы трех совместных событий.

Получена формула

Р(А + В + С) = Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(АВС) (2.11)

 

Обобщая полученный результат на сумму n совместных событий, получим формулу

(2.12)

 


Поделиться:

Дата добавления: 2014-12-30; просмотров: 263; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты