Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Нормальное распределение (распределение Гаусса).




Читайте также:
  1. II. РАСПРЕДЕЛЕНИЕ ДОХОДА
  2. III. РАСПРЕДЕЛЕНИЕ ЧАСОВ КУРСА ПО ТЕМАМ И ВИДАМ РАБОТ
  3. Б. Распределение.
  4. Барометрическая формула. Распределение Больцмана
  5. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  6. Билет 25. Производство, передача и распределение электрической энергии.
  7. Биномиальное распределение.
  8. Биноминальное распределение
  9. В) системы с полным и с частичным распределением затрат.
  10. Внешняя торговля и распределение доходов

Непрерывная случайная величина имеет нормальное распределение (распределена нормально или по Гауссу), если ее плотность имеет вид

.

Вычислим математическое ожидание и дисперсию нормально распределенной случайной величины.

.

Вычислите аналогично .

Обозначим плотность стандартного нормального распределения (при ) ,

обозначим функцию распределения стандартного нормального распределения

,

где - интеграл Лапласа.Значения можно найти в стандартных таблицах.

Вычислим вероятность попадания нормально распределенной случайной величины на отрезок [a,b].

. При вычислении вероятности полезно учитывать нечетность функции :

.

 

Локальная и интегральная формулы Муавра – Лапласа.

Если в схеме Бернулли число испытаний n велико, причем p и q=1-p велики, то для всех m справедлива локальная формула Муавра – Лапласа

.

Если в схеме Бернулли число испытаний n велико, причем p и q=1-p велики, то для всех m справедлива интегральная формула Муавра – Лапласа

.

Это означает, что при большом числе испытаний распределение числа успехов становится нормальным.

Иногда приходится оценивать вероятность отклонения частоты события от вероятности. Покажем, как можно использовать для этого интегральную формулу Муавра – Лапласа.

Заметим, что .

Запишем интегральную формулу Муавра – Лапласа

в виде

.

Поэтому

.

Если интервал симметричен, , то по нечетности

.

 

Примеры.

1) (3.42) Телефонная станция обслуживает 1000 абонентов. Вероятность вызова за минуту 0,0005. Какова вероятность, что за минуту поступит не менее двух вызовов? Здесь n = 1000, p = 0,0005, = np =0.5. (по таблице ).

2) (3.43) Известно, что 20% автомобилей нарушают скоростной режим. Какова вероятность того, что из 1000 автомобилей 210 нарушат правила? Здесь надо пользоваться локальной формулой Муавра-Лапласа при n=1000, p=0,2, m=300.

3) (3.44) Монету подбрасывают 10000 раз. Найти вероятность того, что частота выпадения герба будет отличаться от 0,5 не более, чем на 2%. Здесь надо пользоваться интегральной формулой Муавра-Лапласа при n=10000, р=1/2, m1=400, m2=600. Тогда

 


Дата добавления: 2014-12-30; просмотров: 18; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты