Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Задача линейного прогноза.




Читайте также:
  1. IV. Работа над задачами.
  2. IV. Работа над задачами.
  3. IV. Работа над задачами.
  4. IV. Работа над задачами.
  5. IV. Работа над задачами.
  6. V. Работа над задачами.
  7. V. Работа над задачами.
  8. V. Работа над задачами.
  9. V. Работа над задачами.
  10. V. Работа над задачами.

Заданы характеристики случайного вектора . Вводится случайная величина – оценка - линейный прогноз. Вычислить , чтобы линейный прогноз был наилучшим среднеквадратическим (в смысле минимума погрешности оценки: ).

.

За счет выбора можно лишь минимизировать последнее слагаемое, сделав его нулем: .Теперь остается обеспечить минимум квадратного трехчлена от (найти вершину параболы): . Подставляя это значение, найдем

. Вычислим погрешность оценки при этих значениях параметров

.

При линейной зависимости оценка точна, погрешность равна нулю.

Чем меньше коэффициент корреляции, тем грубее оценка. В крайнем случае, при отсутствии корреляции ( ) .

 

 

Лекция 7.

Законы больших чисел и центральная предельная теорема.

 


Дата добавления: 2014-12-30; просмотров: 22; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты