Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Предельные теоремы.




 

Центральная предельная теорема – это любая теорема, ставящая условия, при которых функция распределения суммы индивидуально малых случайных величин с ростом числа слагаемых сходится к нормальной функции распределения.

Центральная предельная теорема подтверждает следующее: если исход случайного эксперимента определяется большим числом случайных факторов, влияние каждого из которых пренебрежимо мало, то такой эксперимент хорошо аппроксимируется нормальным распределением с параметрами , подобранными соответствующим образом.

 

Теорема Ляпунова.

Пусть Xk – независимые случайные величины, имеющие математические ожидания M(Xk) = mk и дисперсии D(Xk) = Dk. Обозначим . Если можно подобрать такое , что , то при равномерно по x.

 


Поделиться:

Дата добавления: 2014-12-30; просмотров: 176; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты