Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Свойства плотности.




 

1. (функция распределения – неубывающая функция).

2. (по свойству 5 функции распределения) Справедливо обобщение .

3.

4. (по свойству 4 функции распределения)

5.

6. , (Свойство 7 функции распределения)

 

Независимость случайных величин.

Случайные величины X, Y называются независимыми, если , где - функции распределения случайных величин X, Y.

Если случайные величины непрерывны, то, дифференцируя это соотношение по x, y, получим .

Соотношение поэтому можно считать определением независимости непрерывных случайных величин.

Длядискретныхслучайных величин определениенезависимостиможнозаписать в виде .

 

Математическое ожидание.

Математическим ожиданием функции двумерной случайной величины называется

в дискретном случае,

в непрерывном случае.


Поделиться:

Дата добавления: 2014-12-30; просмотров: 93; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты