КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
І)7) Найбільше і найменше значення ф-ції на замкненій області.Ф-ція, неперервна на замкненій обмеженій множині D, досягає в ній найбільшого і найменшого значення. Ці значення вона може приймати як у внутрішніх точках множини D? Так і на її межі, тобто необхідне спеціальне дослідження межових точок множини D. Нехай х1, x2, … xn – послідовність значень незалеж змінної, а y1, y2, … yn – послідовн. значень залежної змінної. Необхідно підібрати пряму, яка найліпшим чином відображає залежність між х і у Þ відхилення фактичних значень ф-ції від підібраної прямої має бути мінімальним. Нехай y=ax+b є рівн. цієї прямої Þ y1=ax1+b1 … yn=axn=bn Відхилення складає: y1 – yi = yi – (axi + b) = yi – axi – b. Це відхилення має бути додат або від’ємним, тому пряма підбирається так, щоб сума квадратів відхилень була найменшою. Необхідна умова існування min полягає в тому, що ¶f/¶a = 0 ¶f/¶b = 0. Маємо: (y1-b-ax1)2=y12+b2+a2x12-2abxi-2bxiyi, отже: Обчислимо:
Таким чином ми отримали 2 рівн з двома змінними a і b. Розв’язання цих двох рівн дає значення a і b, які визначають пряму, яка найкраще відображає хід змінної ф-ції.
(ІІ)9) Поняття первісної ф-ції та невизначеного інтеграла. Первісною ф-цією для даної ф-ції f(x) називають ф-цію F(x) таку, що f(x)=F’(x) або f(x)dx=dF(x).
Теорема про множину первісних: Будь-які 2 первісні однієї і тієї ж ф-ції відрізняються тільки на постійний доданок. F2(x)=F1(x+c).
Всю множину первісних F9x)+с для ф-ції f(x) називають невизначеним інтегралом і позначають: òf(x)dx = F(x)+c. Геометрично не визначений ò представляє множину інтеграл прямих.
|