КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
IV)24) Знакопочергові ряди. Ознака Лейбніца.⇐ ПредыдущаяСтр 147 из 147 Означення: Знакопочерговий ряд – ряд вигляду: Для дослідження знакопочергового ряду на абсолютну і умовну збіжність складається ряд з абсолютних величин. Означення: Знакозмінний ряд називається абсолютно збіжним, якщо збігається ряд із абсолютних величин членів знакозмінного ряду. Означення: Знакозмінний ряд називається умовно збіжним, якщо цей ряд збігається, а ряд із абсолютних величин його членів розбігається.
Ознака Лейбніца. Теорема: Якщо члени знакопочергового ряду спадають по абсолютній величині і границя абсолютної величини загального члена ряду = 0, то ряд збігається. Коротко цю теорему можна записати так:
Наслідок1: Знак суми збіжного знакопочергового ряду такий же, як і знак першого члену ряду. Наслідок2: Якщо знакопочерговий ряд збігається, то його сума за абсолютною величиною не перевищує перший член ряду, тобто |S|<|U1|. Наслідок3: Якщо при обчисленні суми збіжного знакопочергового ряду обмежитись тільки першими n членами, а всі інші відкинути, то похибка за абсолютною величиною не перевищить першого із відкинутих членів. Наслідок4: Якщо для ряду не виконується умова теореми Лейбніца: то ряд є розбіжним, оскільки не виконується необхідна умова збіжності. (IV)25) Функціональні ряди.Область збіжності ряду. Степеневі ряди. Теорема Абеля. Інтервал і радіус збіжності степеневого ряду. Означення: Ряд вигляду U1(x)+U2(x)+…+Un(x)+…, де членами рядуUn(x) є ф-ції від аргументу х, називається функціональним рядом. При х=х0 функціональний ряд перетворюється на на числовий ряд. Означення: Всі значення аргументу х, при яких функціональний ряд збігається, називаються областю збіжності функціонального ряду.
Степеневі ряди: Означення: Функціональний ряд вигляду a0+a1x+a2x2+…+anxn+… називається степеневим рядом, його загальний член Un(x)=anxn, а числа а0,а1,а2,...,аn,... – називають коефіцієнтами степеневого ряду. Степеневий ряд можна записати як: Степеневий ряд може мати вигляд: a0+a1(x-с)+a2(x-с)2+…+an(x-с)n+… Такий ряд за допомогою заміни х-с=у зводиться до звичайного степеневого ряду.
Теорема Абеля. Якщо степеневий ряд: 1) якщо при х=х0, то він абсолютно збігається для будь-якого х, що задовольняє нерівність |x|<|x0|; 2) якщо ряд розбігається при х=х1, то він розбігається при всіх х, що задовольняють нерівніст |x|>|x1|.
Інтервал і радіус збіжності степеневого ряду. Як наслідок із теореми Абеля для Степ. Р. існує інтервал збіжності з центром в точці х0. Означення: Інтервалом збіжності Степ. Ряду називається такий інтервал, у всіх внутрішніх точках якого ряд збігається абсолютно, а для всіх точок |x|>R ряд є розбіжним, при цьому число R>0 називається радіусом збіжності ряду. Зауваження: На кінцях інтервалу збіжності, тобто в точках x=-R, x=R ряд може як збігатись, так і розбігатись. Це питання потребує спеціального дослілження в кожному випадку.
|