КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Геометрический смысл линейных неравенствУравнение А×х+В×у+С=0 определяет на плоскости прямую, которая является границей двух полуплоскостей. Координаты любой точки одной полуплоскости удовлетворяют неравенству А×х+В×у+С>0, координаты любой точки другой – неравенству А×х+В×у+С<0. Поэтому, чтобы решить, какая именно полуплоскость определяется неравенством А×х+В×у+С>0, например, следует подставить координаты конкретной точки в это неравенство. Если получите верное неравенство, то неравенство А×х+В×у+С>0 определяет ту полуплоскость, в которой лежит выбранная точка. Например, решим, какую полуплоскость задает неравенство 2х-3у+6<0. Построим прямую 2х–3у+6=0 по точкам пересечения ее с осями координат.
у 0 2
Координаты точки О(0;0) не удовлетворяют неравенству 2х-3у+6<0. Поэтому нужная полуплоскость не содержит точку О. Таким образом, неравенство 2х-3у+6<0 определяет полуплоскость, лежащую «выше» прямой (заштрихована). Очевидно, полуплоскость, содержащая начало координат, определяется неравенством 2х-3у+6>0. Пример № 6. Построить множество точек, удовлетворяющих системе неравенств:
1) Построим две прямые 3х+4у–12=0 и х–4у–4=0
Координаты точки О(0;0) удовлетворяют и неравенству 3х+4у-12<0 и неравенству х-4у-4<0. Искомая область – угол, образованный построенными прямыми (двойная штриховка). 2) Прямая у–4=0 параллельна оси Ох, а неравенство у>4 определяет полуплоскость, лежащую «выше» прямой. Прямая х–у=0 или у=х совпадает с биссектрисой первого и третьего координатных углов. Нужная полуплоскость лежит «ниже» биссектрисы, т. к. у<х. Искомая область – угол под двойной штриховкой.
3) 2х-3у+6=0 4х-6у-9=0
Искомая область – полоса между двумя параллельными прямыми.
4) х–у+1=0, х–3у-6+0, х+у+4=0
Искомая область – треугольник (под тройной штриховкой).
|