Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Частные производные высших порядков

Читайте также:
  1. I. Квалификационные требования, предъявляемые для замещения высших должностей муниципальной службы
  2. Some, any и их производные
  3. А) Алифатические производные
  4. Аббревиатуры и производные от них слова
  5. Авторское право на служебные, производные, составные и аудиовизуальные произведения
  6. Аналогия закона, аналогия права. Обычаи делового оборота. Значение актов высших судебных органов и судебной практики.
  7. Анатомо-морфологическая база высших психических функций
  8. Б) Пиперазиновые производные
  9. Борьба в высших эшелонах партийного руководства
  10. Брюшина, полость брюшины, производные полости брюшины.

 

Если функция определена в некоторой области D, то её частные производные и в свою очередь, будут функциями двух переменных и определёнными в той же области D или её части. Будем называть их частными производными первого порядка.

Частные производные по и по от функций и в точке если они существуют, называются частными производными второго порядка от функции в этой точке и обозначаются следующим образом:

По определению

т.е. производная, взятая по переменной y от производной функции по переменной х.

Частные произведения второго порядка зависят от координат точки, в которой они вычисляются, т.е., в свою очередь, являются функциями двух переменных. Так, например, для функции в любой точке плоскости имеем:

В заданных точках значения частных производных второго порядка:

Частные производные третьего, четвёртого и пр. порядков вводятся аналогично. Так На примерах вы видели, что т.е. смешанные частные производные функции, отличающиеся лишь последовательностью произведённых дифференцирований, совпадают друг с другом. Это справедливо, конечно, не для всех абсолютно функций. Если смешанные частные производные не являются непрерывными, то они существенно зависят от порядка дифференцирования. В нашей практике функции таковы, что смешанные частные производные не зависят от порядка дифференцирования, т.е., например,

Для функции большего числа переменных понятие частных производных высших порядков аналогично.

Например, если то в любой точке

и т.д.

Пример № 1. Доказать, что функция удовлетворяет уравнению

Найдём указанные производные, для чего начнём с частной производной по х:

(Здесь использовали: ).

Подставим в уравнение

- верно.

 


Дата добавления: 2015-01-05; просмотров: 29; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Производная по направлению. Градиент | Экстремумы функции двух переменных
lektsii.com - Лекции.Ком - 2014-2018 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты