Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Весовые коэффициенты важности критериев




Читайте также:
  1. Абсолютные скорости изменения критериев оценки УБП
  2. Абсолютные числа разводов и общие коэффициенты разводимости в США и СССР,
  3. АНАТОМИЯ ВАЖНОСТИ
  4. В связи с этим выделяется несколько критериев, или оснований типологизации социальных движений.
  5. Взвешивающие коэффициенты радиочувствительности
  6. Выбор критериев для отбора инвестиционных проектов в портфель. Основные тезисы.
  7. Выражение коэффициента массопередачи через коэффициенты массоотдачи
  8. Генезис культуры. Биологическое и социальное в человеке. Проблема критериев культуры
  9. Как определяются коэффициенты ряда Фурье?

При появлении многокритериальных задач возникли дополнительные трудности их решения, связанные с получением информации от ЛПР. Естественной реакцией на это было стремление получить такую информацию сразу и быстро устранить многокритериальность. Этот подход был реализован путем объединения многих критериев в один с помощью так называемых весовых коэффициентов важности критериев. Глобальный критерий вычисляется по формуле

 

где Ci – частные критерии; wi – веса (коэффициенты важности критериев:

0<=wi <=1; (2)

Идея такого объединения состоит в том, что ЛПР назначает числа (часто по численной шкале 1-100), представляющие для него ценность рассматриваемого критерия. Считается, что ЛПР может назначить такие числа. Далее весовые коэффициенты нормируются на основе условия (2).

Обратимся к рис., на котором показано множество Эджворта – Парето для двух критериев. Здесь можно увидеть, что решения, соответствующие точкам А и В на множество Парето, могут быть представлены в виде

Существует лемма, утверждающая, что для линейной задачи любое эффективное, находящиеся на множестве Э-П решение может быть представлено в виде (1), т.е. в виде весов, умноженных на частные критерии. Следовательно, формально задача сводится к нахождению весов.

 


Дата добавления: 2015-01-19; просмотров: 65; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты