Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Непрерывная случайная величина. Плотность вероятности.




Читайте также:
  1. III.11. ТЕОРЕТИЧЕСКАЯ ПЛОТНОСТЬ
  2. Б) Функция распределения и плотность вероятности непрерывной случайной величины
  3. Билет 45. непрерывная разливка стали и оборудование для него
  4. Билет №1. Дискретная случайная величина, закон и функция распределения
  5. Билет №8. Закон распределения системы случайных величин. Функция и плотность двумерной случайной величины и их свойства.
  6. В дальней зоне воздействие ЭМП оценивается плотностью потока энергии
  7. Во сколько раз плотность воздуха, заполняющего помещение зимой (70C), больше плотности летом (370C)? Давление газа считать постоянным.
  8. Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока.
  9. Где ρi плотность, кг/м3, а Vi – объем этого материала, м3.
  10. Геометрические вероятности.

Ответ: Случайная величина Х называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной. Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю P{X=α}=0 для любого α.

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие плотности распределения или плотности вероятности. Вероятность попадания непрерывной случайной величины X на участок от x до x+Dx равна приращению функции распределения на этом участке: P{x£ X <x+Dx}=F(x+Dx) - F(x). Плотность вероятности на этом участке определяется отношением: (5.6) Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке xназывается производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения. Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности. Вероятность попадания случайной величины X на произвольный участок [a, b[ равна сумме элементарных вероятностей на этом участке: (5.7) В геометрической интерпретации P{α≤X<β} равна площади, ограниченной сверху кривой плотности распределения f(x) и опирающейся на участок (α,β) (рис. 5.4). Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность: (5.8)

В геометрической интерпретации F(x) равна площади, ограниченной сверху кривой плотности распределения f(x) и лежащей левее точки x (рис. 5.5). Основные свойства плотности распределения: 1)Плотность распределения неотрицательна: f(x) ³ 0. Это свойство следует из определения f(x) – производная неубывающей функции не может быть отрицательной. 2)Условие нормировки: Это свойство следует из формулы (5.8), если положить в ней x=∞.Геометрически основные свойства плотности f(x) интерпретируются так: 1)вся кривая распределения лежит не ниже оси абсцисс; 2)полная площадь, ограниченная кривой распределения и осью абсцисс, равна единице.




Дата добавления: 2015-01-19; просмотров: 13; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.004 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты